

Greatest Common Divisor: k = GCD(x,y) greatest $k \ge 1$ such that k|x and k|y.

Least Common Multiple: k=LCM(x,y) smallest $k \ge 1$ such that $x \mid k$ and $y \mid k$.

Fact:

$$GCD(x,y) \times LCM(x,y) = x \times y$$

You can use

MAX(a,b) + MIN(a,b) = a+b

to prove the above fact...

(a mod n) means the remainder when a is divided by n.

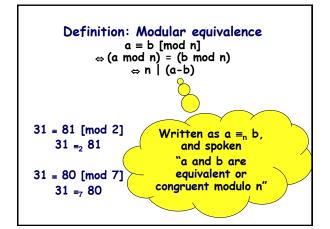
a mod n = r

⇔

a = d n + r for some integer d

or

a = n + r k for some integer k



≡_n induces a natural partition of the integers into n "residue" classes.

("residue" = what left over = "remainder")

Define residue class
[k] = the set of all integers that
are congruent to k modulo n.

Residue Classes Mod 3:

$$[-1] = \{ ..., -4, -1, 2, 5, 8, .. \} = [2]$$

=_n is an <u>equivalence relation</u>

In other words, it is

Reflexive: a ≡_n a

Symmetric:
$$(a \equiv_n b) \Rightarrow (b \equiv_n a)$$

Transitive:
$$(a \equiv_n b \text{ and } b \equiv_n c) \Rightarrow (a \equiv_n c)$$

Why do we care about these residue classes?

Because we can replace any member of a residue class with another member when doing addition or multiplication mod n and the answer will not change

To calculate: 249 * 504 mod 251

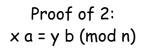
just do -2 * 2 = -4 = 247

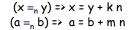
Fundamental lemma of plus and times mod n:

If
$$(x \equiv_n y)$$
 and $(a \equiv_n b)$. Then

1)
$$x + a \equiv_n y + b$$

2)
$$x * a =_n y * b$$





xa = yb + n(ym + bk + km)

Another Simple Fact:
if
$$(x \equiv_n y)$$
 and $(k|n)$, then: $x \equiv_k y$

Example: $10 = 16 \Rightarrow 10 = 16$

Proof:

A <u>Unique</u> Representation System Modulo n:

We pick one representative from each residue class and do all our calculations using these representatives.

Unsurprisingly, we use 0, 1, 2, ..., n-1

Unique representation system mod 2

Finite set $Z_2 = \{0, 1\}$

+ ₂ XOR	0	1
0	0	1
1	1	0

* ₂	0	1
0	0	0
1	0	1

Unique representation system mod 3

Finite set $S = \{0, 1, 2\}$

+ and * defined on S:

+	0	1	2
0	0	1	2
1	1	2	0
2	2	0	1

*	0	1	2
0	0	0	0
1	0	1	2
2	0	2	1

Unique representation system mod 4

Finite set $S = \{0, 1, 2, 3\}$

+ and * defined on S:

+	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

*	0	1	2	3
0	0	0	0	0
1	0	1	2	3
2	0	2	0	2
3	0	3	2	1

Notation

$$Z_n = \{0, 1, 2, ..., n-1\}$$

Define operations $+_n$ and $*_n$:

$$a +_n b = (a + b \mod n)$$

 $a *_n b = (a * b \mod n)$

Some properties of the operation +

["Closed"]

$$x, y \in Z_n \Rightarrow x +_n y \in Z_n$$

["Associative"]
x, y, z
$$\in$$
 Z_n \Rightarrow (x +_n y) +_n z = x +_n (y +_n z)

["Commutative"]

$$x, y \in Z_n \Rightarrow x +_n y = y +_n x$$

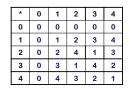
Similar properties also hold for *n

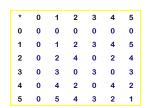
For addition tables, rows and columns always are a permutation of Z_n

+	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	4	0	1	2	3

+	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	2	3	4	5	0
2	2	3	4	5	0	1
3	3	4	5	0	1	2
4	4	5	0	1	2	3
5	5	0	1	2	3	4

For multiplication, some rows and columns are permutation of Z_n , while others aren't...





what's happening here?

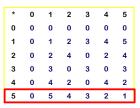
For addition, the permutation property means you can solve, say,

Subtraction mod n is well-defined

Each row has a 0, hence -a is that element such that a + (-a) = 0 $\Rightarrow a - b = a + (-b)$

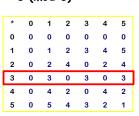
+	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	2	3	4	5	0
2	2	3	4	5	0	1
3	3	4	5	0	1	2
4	4	5	0	1	2	3
5	5	0	1	2	3	4

For multiplication, if a row has a permutation you can solve, say,



But if the row does not have the permutation property, how do you solve

no multiplicative inverse!



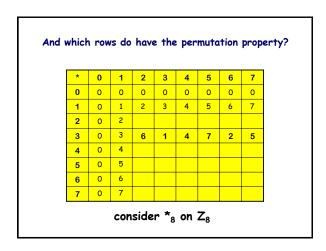
Division

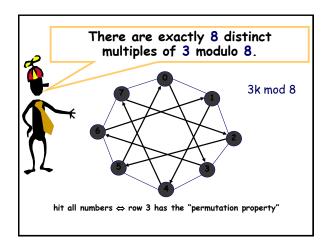
If you define $1/a \pmod{n} = a^{-1} \pmod{n}$ as the element b in Z_n such that $a * b = 1 \pmod{n}$

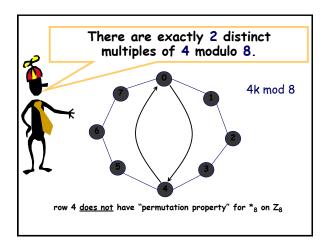
Then
$$x/y \pmod{n}$$

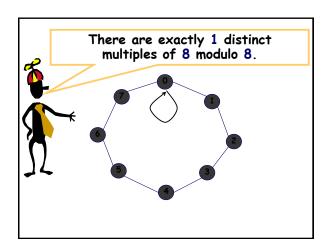
Hence we can divide out by only the y's for which 1/y is defined!

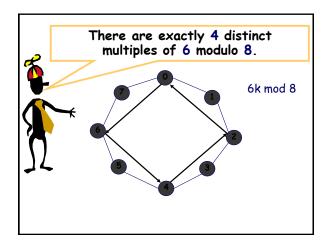
A visual way to understand multiplication and the "permutation property".











What's the pattern?

- · exactly 8 distinct multiples of 3 modulo 8
- · exactly 2 distinct multiples of 4 modulo 8
- · exactly 1 distinct multiple of 8 modulo 8
- · exactly 4 distinct multiples of 6 modulo 8

· exactly _____ distinct

multiples of x modulo y

Theorem:

There are exactly

$$LCM(y,x)/x = y/GCD(x,y)$$

distinct multiples of x modulo y

Hence,
only those values of x with GCD(x,y) = 1
have n distinct multiples
(i.e., the permutation property for *n on
Zn)

Fundamental lemma of division (or cancelation) modulo n:

if GCD(c,n)=1, then $ca \equiv_n cb \Rightarrow a \equiv_n b$

Proof:

$$c a =_{n} c b => n |(ca - cb) => n |c(a-b)$$

But GCD(n, c)=1, thus

 $n|(a-b) \Rightarrow a =_n b$

If you want to extend to general c and n

 $ca \equiv_n cb \Rightarrow a \equiv_{n/qcd(c,n)} b$

Fundamental lemmas mod n:

If $(x \equiv_n y)$ and $(a \equiv_n b)$. Then

1)
$$x + a \equiv_n y + b$$

2)
$$x * a =_{n} y * b$$

3)
$$x - a \equiv_n y - b$$

4)
$$cx \equiv_n cy \Rightarrow a \equiv_n b$$

if gcd(c,n)=1

New definition:

 $Z_n^* = \{x \in Z_n \mid GCD(x,n) = 1\}$

Multiplication over this set Z_n^* has the <u>cancellation</u> property.

$$Z_6 = \{0,1,2,3,4,5\}$$

 ${Z_6}^* = \{1,5\}$

+	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	2	3	4	5	0
2	2	3	4	5	0	1
3	3	4	5	0	1	2
4	4	5	0	1	2	3
5	5	0	1	2	3	4

*	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	1	2	3	4	5
2	0	2	4	0	2	4
3	0	3	0	3	0	3
4	0	4	2	0	4	2
5	0	5	4	3	2	1

We've got closure

Recall we proved that \mathbf{Z}_n was "closed" under addition and multiplication?

What about Z_n* under multiplication?

Fact: if a,b in Z_n^* , then a b in Z_n^*

Proof: if
$$gcd(a,n) = gcd(b,n) = 1$$
,
then $gcd(a b, n) = 1$
then $gcd(a b mod n, n) = 1$

$$Z_{12}^* = \{0 \le x < 12 \mid gcd(x, 12) = 1\}$$

= \{1,5,7,11\}

* 12	1	5	7	11
1	1	5	7	11
5	5	1	11	7
7	7	11	1	5
11	11	7	5	1

$$Z_5^* = \{1,2,3,4\} = Z_5 \setminus \{0\}$$

*5	1	2	3	4
1	1	2	3	4
2	2	4	1	3
3	3	1	4	2
4	4	3	2	1

For prime p, the set $Z_p^* = Z_p \setminus \{0\}$

Proof:
It just follows from the definition!

For prime p, all 0 < x < p satisfy gcd(x,p) = 1

Euler Phi Function $\phi(n)$

φ(n) = size of Z_n*
 = number of 1 ≤ k < n that are relatively prime to n.

p prime

$$\Rightarrow$$
 Z_p^* = {1,2,3,...,p-1}

$$\Rightarrow \phi(p) = p-1$$

$$Z_{12}^* = \{0 \le x < 12 \mid gcd(x,12) = 1\}$$

= \{1,5,7,11\}

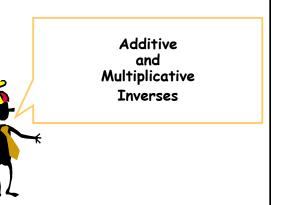
 $\phi(12) = 4$

* 12	1	5	7	11
1	1	5	7	11
5	5	1	11	7
7	7	11	1	5
11	11	7	5	1

Theorem: if p,q distinct primes then $\phi(p q) = (p-1)(q-1)$

pq = # of numbers from 1 to pq
p = # of multiples of q up to pq
q = # of multiples of p up to pq
1 = # of multiple of <u>both</u> p and q up
to pq

$$\phi(pq) = pq - p - q + 1 = (p-1)(q-1)$$



Additive inverse of a mod n = number b such that a+b=0 (mod n)

What is the additive inverse of a = 342952340 in $Z_{n = 4230493243}$?

Answer: n - a = 4230493243-342952340 =3887540903

Multiplicative inverse of a mod n = number b such that a*b=1 (mod n)

Remember, only defined for numbers a in Z_n^{\star}

Multiplicative inverse of a mod n = number b such that a*b=1 (mod n)

What is the multiplicative inverse of a = 342952340 in $Z_{4230493243} = Z_n$?

Answer: $a^{-1} = 583739113$

How do you find multiplicative inverses fast?

```
Theorem: given positive integers X, Y, there exist integers r, s such that
r X + s Y = gcd(X, Y)
and we can find these integers fast!
```

How?

Extended Euclid Algorithm

Euclid's Algorithm for GCD

```
Euclid(A,B)

If B=0 then return A

else return Euclid(B, A mod B)
```

```
Euclid(67,29) 67 - 2*29 = 67 mod 29 = 9

Euclid(29,9) 29 - 3*9 = 29 mod 9 = 2

Euclid(9,2) 9 - 4*2 = 9 mod 2 = 1

Euclid(2,1) 2 - 2*1 = 2 mod 1 = 0

Euclid(1,0) outputs 1
```

```
Let <r,s> denote the number r*67 + s*29.

Calculate all intermediate values in this
representation.
```

```
67=<1,0> 29=<0,1>
```

Euclid(1,0) outputs

```
      Euclid(67,29)
      9=<1,0> - 2*<0,1>
      9=<1,-2>

      Euclid(29,9)
      2=<0,1> - 3*<1,-2>
      2=<-3,7>

      Euclid(9,2)
      1=<1,-2> - 4*<-3,7>
      1=<13,-30>

      Euclid(2,1)
      0=<-3,7> - 2*<13,-30>
      0=<-29,67>
```

1 = 13*67 - 30*29

Finally, a puzzle...

You have a 5 gallon bottle, a 3 gallon bottle, and lots of water.

Can you measure out exactly 4 gallons?

Diophantine equations

Does the equality 3x + 5y = 4have a solution where x,y are integers?

New bottles of water puzzle

You have a 6 gallon bottle, a 3 gallon bottle, and lots of water.

How can you measure out exactly 4 gallons?

Theorem

The linear equation

$$a \times + b y = c$$

has an integer solution in x and y iff gcd(a,b)|c

The linear equation $a \times + b y = c$ has an integer solution in \times and y iff gcd(a,b)|c

=>) gcd(a,b)|a and gcd(a,b)|b => gcd(a,b)|(a x + b y)

 \leftarrow gcd(a,b)|c \Rightarrow c = z * gcd(a,b)

On the other hand, $gcd(a,b) = x_1 a + y_1 b$

$$z \gcd(a,b) = z x_1 a + z y_1 b$$

$$c = z x_1 a + z y_1 b$$

Hilbert's 10th problem

Hilbert asked for a universal method of solving all Diophantine equations

 $P(x_1, x_2, ..., x_n) = 0$

with any number of unknowns and integer coefficients.

In 1970 Y. Matiyasevich proved that the Diophantine problem is unsolvable.

- · Working modulo integer n
- Definitions of Z_n, Z_n*
- Fundamental lemmas of +,-,*,/
- Extended Euclid Algorithm
- Euler phi function $\phi(n) = |Z_n^*|$