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1p

Greatest Common Divisor:
k=GCD(x,y) 

greatest k ≥ 1 such that k|x and k|y.

Least Common Multiple:
k=LCM(x,y) 

smallest k ≥ 1 such that x|k and y|k.

You can use
MAX(a,b) + MIN(a,b) = a+b
to prove the above fact…

Fact:
GCD(x,y) × LCM(x,y) = x × y

(a mod n) means the remainder
when  a is divided by n. 

a mod n = r


a = d n + r for some integer d
or

a = n + r k for some integer k

Definition: Modular equivalence
a  b [mod n] 

 (a mod n) = (b mod n)
 n | (a-b)

Written as a n b, 
and spoken

“a and b are 
equivalent or 

congruent modulo n”

31  81 [mod 2]
31 2 81

31  80 [mod 7]
31 7 80

n induces a natural partition of the 
integers into n “residue” classes.

(“residue” = what left over = “remainder”)

Define residue class 
[k] = the set of all integers that 

are congruent to k modulo n.
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Residue Classes Mod 3:

[0]  = { …, -6, -3, 0, 3, 6, ..}
[1]  = { …, -5, -2, 1, 4, 7, ..}
[2]  = { …, -4, -1, 2, 5, 8, ..}

[-6] = { …, -6, -3, 0, 3, 6, ..}
[7]  = { …, -5, -2, 1, 4, 7, ..}
[-1] = { …, -4, -1, 2, 5, 8, ..}

= [0]

= [1]

= [2]

n is an equivalence relation

In other words, it is

Reflexive: a n a

Symmetric: (a n b)  (b n a)

Transitive: (a n b and b n c)  (a n c)

Why do we care about these 
residue classes?

Because we can replace any member 
of a residue class with another member

when doing addition or multiplication mod n
and the answer will not change

To calculate: 249 *  504  mod 251

just do      -2 * 2  = -4 = 247

Fundamental lemma of 
plus and times mod n:

If (x n y) and (a n b). Then

1) x + a n y + b
2) x * a n y * b

Proof of 2: 
x a = y b (mod n)

(x n y) => x = y + k n
(a n b) =>  a = b + m n

x a = y b + n (y m + b k + k m)

Another Simple Fact:
if (x n y) and (k|n), then: x k y

Example: 10 6 16  10 3 16

Proof:

x = y + m n
n = a k

x = y + a m k
x k y
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A Unique Representation System 
Modulo n:

We pick one representative from 
each residue class and do all our calculations 

using these representatives.

Unsurprisingly, we use 0, 1, 2, …, n-1

Unique representation system mod 2

Finite set Z2 = {0, 1}

+2 0 1

0 0 1

1 1 0

*2 0 1

0 0 0

1 0 1

XOR AND

Unique representation system mod 3

Finite set S = {0, 1, 2}

+ and * defined on S:

+ 0 1 2

0 0 1 2

1 1 2 0

2 2 0 1

* 0 1 2

0 0 0 0

1 0 1 2

2 0 2 1

Unique representation system mod 4

Finite set S = {0, 1, 2, 3}

+ and * defined on S:

+ 0 1 2 3

0 0 1 2 3

1 1 2 3 0

2 2 3 0 1

3 3 0 1 2

* 0 1 2 3

0 0 0 0 0

1 0 1 2 3

2 0 2 0 2

3 0 3 2 1

Notation

Define operations +n and *n:

a +n b = (a + b mod n)
a *n b = (a * b mod n)

Zn = {0, 1, 2, …, n-1}
[“Closed”]

x, y  Zn  x +n y  Zn

[“Associative”]
x, y, z  Zn  (x +n y) +n z = x +n (y +n z)

[“Commutative”]
x, y  Zn  x +n y  = y +n x 

Some properties of the operation +n

Similar properties also hold for *n
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For addition tables, rows and columns
always are a permutation of Zn

+ 0 1 2 3 4 5

0 0 1 2 3 4 5

1 1 2 3 4 5 0

2 2 3 4 5 0 1

3 3 4 5 0 1 2

4 4 5 0 1 2 3

5 5 0 1 2 3 4

+ 0 1 2 3 4

0 0 1 2 3 4

1 1 2 3 4 0

2 2 3 4 0 1

3 3 4 0 1 2

4 4 0 1 2 3

For multiplication, some rows and columns
are permutation of Zn, while others aren’t…

* 0 1 2 3 4

0 0 0 0 0 0

1 0 1 2 3 4

2 0 2 4 1 3

3 0 3 1 4 2

4 0 4 3 2 1

* 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 1 2 3 4 5

2 0 2 4 0 2 4

3 0 3 0 3 0 3

4 0 4 2 0 4 2

5 0 5 4 3 2 1

what’s happening here?

For addition, the permutation property
means you can solve, say,

+ 0 1 2 3 4 5

0 0 1 2 3 4 5

1 1 2 3 4 5 0

2 2 3 4 5 0 1

3 3 4 5 0 1 2

4 4 5 0 1 2 3

5 5 0 1 2 3 4

4 + ___  = 1 (mod 6)

Subtraction mod n is 
well-defined

Each row has a 0,
hence –a is that element
such that a + (-a) = 0

 a – b = a + (-b)

4 + ___  = x (mod 6) for any x in Z6

For multiplication, if a row has a permutation
you can solve, say,

5 * ___  = 4 (mod 6)

* 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 1 2 3 4 5

2 0 2 4 0 2 4

3 0 3 0 3 0 3

4 0 4 2 0 4 2

5 0 5 4 3 2 1

or,  5 * ___  = x (mod 6)

But if the row does not have the permutation
property, how do you solve

3 * ___  = 4 (mod 6)

* 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 1 2 3 4 5

2 0 2 4 0 2 4

3 0 3 0 3 0 3

4 0 4 2 0 4 2

5 0 5 4 3 2 1

3 * ___  = 3 (mod 6)

no solutions!

multiple solutions!

3 * ___ = 1 (mod 6)

no multiplicative
inverse!

Division

If you define 1/a (mod n) = a-1 (mod n) 
as the element b in Zn

such that a * b = 1 (mod n)

Then x/y (mod n) 
= 

x * 1/y (mod n)

Hence we can divide out by only the y’s
for which 1/y is defined!
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A visual way to understand 
multiplication 

and the 
“permutation property”.

* 0 1 2 3 4 5 6 7

0

1

2

3 6 1 4 7 2 5

4

5

6

7

consider *8 on Z8

And which rows do have the permutation property?

0 0 0 0 0 0 0 0

1 2 3 4 5 6 70

0

0

0

0

0

0

2

3

4

5

6

7

hit all numbers  row 3 has the “permutation property”

There are exactly 8 distinct 
multiples of 3 modulo 8.

0

1

2

3

4

5

6

7 3k mod 8

There are exactly 2 distinct 
multiples of 4 modulo 8.

row 4 does not have “permutation property” for *8 on Z8

0

1

2

3

4

5

6

7 4k mod 8

There are exactly 1 distinct 
multiples of 8 modulo 8.

0

1

2

3

4

5

6

7

There are exactly 4 distinct 
multiples of 6 modulo 8.

0

1

2

3

4

5

6

7 6k mod 8



6

What’s the pattern?

• exactly 8 distinct multiples of 3 modulo 8

• exactly 2 distinct multiples of 4 modulo 8

• exactly 1 distinct multiple of 8 modulo 8

• exactly 4 distinct multiples of 6 modulo 8

• exactly __________________ distinct

multiples of x modulo y

y/GCD(x,y)

Theorem: 

There are exactly 

LCM(y,x)/x = y/GCD(x,y)

distinct multiples of x modulo y

Hence,
only those values of x with GCD(x,y) = 1

have n distinct multiples
(i.e., the permutation property for *n on 

Zn)

Fundamental lemma of division (or 
cancelation) modulo n:

if GCD(c,n)=1, then ca n cb  a n b 

Proof:

c a =n c b  => n |(ca – cb)  => n |c(a-b)

But GCD(n, c)=1, thus 

n|(a-b) => a =n b

If you want to extend to 
general c and n

ca n cb  a n/gcd(c,n) b 

Fundamental lemmas mod n:

If (x n y) and (a n b). Then

1) x + a n y + b
2) x * a n y * b
3) x - a n y – b

4) cx n cy  a n b
if gcd(c,n)=1

New definition:

Zn
* = {x  Zn | GCD(x,n) =1}

Multiplication over this set Zn
*

has the cancellation property.
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+ 0 1 2 3 4 5

0 0 1 2 3 4 5

1 1 2 3 4 5 0

2 2 3 4 5 0 1

3 3 4 5 0 1 2

4 4 5 0 1 2 3

5 5 0 1 2 3 4

* 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 1 2 3 4 5

2 0 2 4 0 2 4

3 0 3 0 3 0 3

4 0 4 2 0 4 2

5 0 5 4 3 2 1

Z6 = {0,1,2,3,4,5}

Z6
* = {1,5}

Recall we proved that Zn was “closed”
under addition and multiplication?

What about Zn
* under multiplication?

Fact: if a,b in Zn
*, then a b in Zn

*

Proof: if gcd(a,n) = gcd(b,n) = 1,
then gcd(a b, n) = 1
then gcd(a b mod n, n) = 1

We’ve got closure

Z12
* = {0 ≤ x < 12 | gcd(x,12) = 1}

= {1,5,7,11}

*12 1 5 7 11

1 1 5 7 11

5 5 1 11 7

7 7 11 1 5

11 11 7 5 1

*5 1 2 3 4

1 1 2 3 4

2 2 4 1 3

3 3 1 4 2

4 4 3 2 1

= Z5 \ {0}Z5
* = {1,2,3,4}

For prime p, the set Zp
* = Zp \ {0}

Proof:
It just follows from the 

definition!

For prime p, all 0 < x < p satisfy 
gcd(x,p) = 1

Euler Phi Function (n) 

(n) = size of Zn
* 

=  number of 1 ≤ k < n that 
are relatively prime to n.

p prime 

 Zp
*= {1,2,3,…,p-1}

 (p) = p-1
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Z12
* = {0 ≤ x < 12 | gcd(x,12) = 1}

= {1,5,7,11}

*12 1 5 7 11

1 1 5 7 11

5 5 1 11 7

7 7 11 1 5

11 11 7 5 1

(12) = 4

Theorem: if p,q distinct primes then 
(p q) = (p-1)(q-1) 

pq = # of numbers from 1 to pq
p   = # of multiples of q up to pq
q   = # of multiples of p up to pq
1   = # of multiple of both p and q up 
to pq

(pq) = pq – p – q + 1 = (p-1)(q-1)

Additive 
and 

Multiplicative
Inverses

Additive inverse of a mod n
= number b such that a+b=0 (mod n)

What is the additive inverse 
of a = 342952340 in

Zn = 4230493243?

Answer: n – a 
= 4230493243-342952340

=3887540903

Multiplicative inverse of a mod n
= number b such that a*b=1 (mod n)

Remember,
only defined for numbers a in Zn

*

Multiplicative inverse of a mod n
= number b such that a*b=1 (mod n)

What is the multiplicative inverse 
of a = 342952340 in

Z4230493243 = Zn?

Answer: a-1 = 583739113
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How do you find 
multiplicative inverses 

fast ?

Theorem: given positive integers X, Y, there
exist integers r, s such that

r X + s Y = gcd(X, Y)

and we can find these integers fast!

Now take n, and a in Zn
*

gcd(a, n) ? a in Zn
*  gcd(a, n) = 1

suppose ra + sn = 1

then ra =n 1

so, r = a-1 mod n

Extended Euclid Algorithm

Theorem: given positive integers X, Y, there
exist integers r, s such that

r X + s Y = gcd(X, Y)

and we can find these integers fast!

How?
Euclid(67,29) 67 – 2*29 = 67 mod 29 = 9
Euclid(29,9) 29 – 3*9 = 29 mod 9   = 2
Euclid(9,2) 9 – 4*2 = 9 mod 2     = 1
Euclid(2,1) 2 – 2*1 = 2 mod 1      = 0
Euclid(1,0) outputs 1

Euclid(A,B)
If B=0 then return A

else return Euclid(B, A mod B)

Euclid’s Algorithm for GCD

Extended Euclid Algorithm

Let <r,s> denote the number r*67 + s*29. 
Calculate all intermediate values in this 

representation.

67=<1,0>     29=<0,1> 

Euclid(67,29) 9=<1,0> – 2*<0,1> 9 =<1,-2>

Euclid(29,9) 2=<0,1> – 3*<1,-2> 2=<-3,7>

Euclid(9,2) 1=<1,-2> – 4*<-3,7> 1=<13,-30>

Euclid(2,1) 0=<-3,7> – 2*<13,-30> 0=<-29,67> 

Euclid(1,0) outputs 1 = 13*67 – 30*29

Finally, a puzzle…

You have a 5 gallon bottle, 
a 3 gallon bottle, 
and lots of water.

Can you measure out
exactly 4 gallons?
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Diophantine equations

Does the equality 
3x + 5y = 4

have a solution where x,y are integers?

New bottles of water puzzle

You have a 6 gallon bottle, 
a 3 gallon bottle, 
and lots of water.

How can you measure out
exactly 4 gallons?

Theorem

The linear equation  

a x + b y = c

has an integer solution in x and y iff gcd(a,b)|c

The linear equation  
a x + b y = c

has an integer solution in x and y iff gcd(a,b)|c

=>) gcd(a,b)|a and gcd(a,b)|b => gcd(a,b)|(a x + b y)

<=) gcd(a,b)|c => c = z * gcd(a,b)

On the other hand,  gcd(a,b) = x1 a + y1 b

z gcd(a,b) = z x1 a + z y1 b

c = z x1 a + z y1 b

Hilbert’s 10th problem

Hilbert asked for a universal method of solving all 
Diophantine equations 

P(x1,x2,…,xn)=0
with any number of unknowns and integer 

coefficients.

In 1970 Y. Matiyasevich proved that the 
Diophantine problem is unsolvable.

Study Bee

• Working modulo integer n

• Definitions of Zn, Zn
*

• Fundamental lemmas of +,-,*,/

• Extended Euclid Algorithm

• Euler phi function (n) = |Zn
*|


