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Number Theory
and
Modular Arithmetic

%\ = 1

Fact:
6CD(x,y) = LCM(x,y) = x x y

You can use
MAX(a,b) + MIN(a,b) = a+b
to prove the above fact...

Definition: Modular equivalence
a =b [mod n]
< (a mod n) = (b mod n)
e hn | (Cl-b)

31 = 81 [mod 2]

Written as a =, b,
31 -, 81

and spoken
“a and b are
equivalent or
congruent modulo n”

31 = 80 [mod 7]
31 -, 80

Greatest Common Divisor:
k=6CD(x,y)
greatest k > 1 such that k|x and Kly.

Least Common Multiple:
k=LCM(x,y)
smallest k 2 1 such that x|k and y|k.

(a n) means the remainder
when a is divided by n.

a n=r
=
a=dn+r for some integer d
or

a=n+r k for some integer k

=, induces a natural partition of the
integers into n “residue” classes.

("residue” = what left over = “remainder")

Define residue class

[k] = the set of all integers that
are congruent to k modulo n.




Residue Classes Mod 3:

[0] ={., -6 -3,0 3,6, .)
[1] ={., -5, -2,1,4,7,.)
2] ={.. -4 -1,2,5,8, .}
[-6]={ .. -6, -3,0, 3,6, .} 0]
(71 =(... -5, -2,1,4,7 .3}
[-11=(.., -4, -1, 2,5, 8, .}=1[2]

=, is an equivalence relation

In other words, it is
Reflexive: a =, a
Symmetric: (a=, b) = (b=, a)

Transitive: (a=,band b=, ¢c) = (a=,¢)

Why do we care about these
residue classes?

Because we can replace any member
of a residue class with another member
when doing addition or multiplication mod n

and the answer will not change

To calculate: 249 * 504 mod 251
justdo -2*2 =-4=247

Fundamental lemma of
plus and times mod n:

If (x=,y)and (a=,b). Then

)x+a=,y+b
2)x*a=y*b

Proof of 2:
ﬁ_ xa=yb (modn)

(x=y) > x=y+kn
(a=,b)=> a=b+mn

xa=yb+n(ym+bk+km)

Another Simple Fact:
if (x=,y) and (k|n), then: x =,y

Example: 10 =, 16 = 10 =5 16

Proof:
Xzy+mn
n=ak
x=y+amk
X=y




A Unique Representation System
Modulo n:

We pick one representative from
each residue class and do all our calculations
using these representatives.

Unsurprisingly, we use 0, 1, 2, ..., n-1

Unique representation system mod 2

Finite set Z, = {0, 1}

+2 0 1 *2 0 1
XOR AND
0 0 1 0 0 0
1 1 0 1 0 1

Unique representation system mod 3

Finite set S = {0, 1, 2}

+ and * defined on S:
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Unique representation system mod 4

Finite set 5 = {0, 1, 2, 3}

+ and * defined on S:
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Notation
z,={0,1,2, ..,n-1}

Define operations +, and *:

a+, b =(a+bmodn)
a*,b=(a* b modn)

Some properties of the operation

["Closed”]

X,yeZ, =>x+,yecl,

["Associative”]
X, Y. zeZ,‘=>(x+,,y)+,,z=x+,,(y+,|z)

["Commutative”]
X, YEZ, DX+ Yy =Y+ X

Similar properties also hold for *,




For addition tables, rows and columns
always are a permutation of Z,
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For multiplication, some rows and columns
are permutation of Z,, while others aren't..
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what's happening here?

For addition, the permutation property
means you can solve, say,
4+ ___ =1 (mod6)
4+ ___ = x(mod 6) for any x in Z,

Subtraction mod n is
well-defined

Each row has a O,
hence -a is that element
such that a + (-a) = 0

=a-b=a+(-b)

alslw|v|(=a|of+
alslw(v|a|o|o
cjulbdb W N =22
alojols|w|n|n
N =2Jo |0 |bd W lw
wWiINn=2 ol |d | »
HlJwiINn (2ol |lo

For multiplication, if a row has a permutation
you can solve, say,

But if the row does not have the permutation
property, how do you solve

3% __ = 4(mod 6)
mifiple soutors |3 * __ = 3 (mod 6)

* 0 1 2 3 4 5
0 0o 0 0 0 0 o
1. 0 1 2 3 4 5
3*__=1(mod 6) 2 0 2 4 0 2 4
no multiplicative [s o s o s o s3]
inversel! 4 0 4 2 0 4 2
5 0 5 4 3 2 1

5* = 4 (mod 6)

or, 5* = x (mod 6)
* 0 1 2 3 4 5
o 0 0 0 0 0 0
1.0 1 2 3 4 5
2 0 2 4 0 2 4
3 0 3 0 3 0 3
4 0 4 2 0 4 2

|5 o 5 4 3 2 1|
Division

If you define 1/a (mod n) = a-! (mod n)
as the element b in Z,

such that a * b = 1 (mod n)
Then x/y (mod n)
x * 1/y (mod n)

Hence we can divide out by only the y's
for which 1/y is defined!




A visual way to understand
multiplication
and the
“permutation property”.

And which rows do have the permutation property?
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consider *; on Zg

]

There are exactly 8 distinct
multiples of 3 modulo 8.

3k mod 8

hit all numbers < row 3 has the “permutation property”

There are exactly 2 distinct
multiples of 4 modulo 8.

@ N

row 4 does not have “permutation property” for *g on Zg

]

There are exactly 1 distinct
multiples of 8 modulo 8.

There are exactly 4 distinct
multiples of 6 modulo 8.

@ -




What's the pattern?

- exactly 8 distinct multiples of 3 modulo 8
- exactly 2 distinct multiples of 4 modulo 8
+ exactly 1 distinct multiple of 8 modulo 8
- exactly 4 distinct multiples of 6 modulo 8

y/6CD(x,y)

+ exactly distinct

multiples of x moduloy

Theorem:

There are exactly
LCM(y,x)/x = y/GCD(x,y)

distinct multiples of x modulo y

Hence,
only those values of x with 6CD(x,y) = 1
have n distinct multiples

(i.e., the permutation property for *, on

n.

Fundamental lemma of division (or
cancelation) modulo n:

if 6CD(c,n)=1, thenca=,cb = a=,b
Proof:
ca=z,cb =>n|(ca-cb) =>n |c(a-b)

But 6CD(n, c)=1, thus

nl(a-b) =>a =, b

If you want to extend to
general c and n

ca =5 Cb = a En/gcd(c,n) b

Fundamental lemmas mod n:
If (x=,y)and (a=, b). Then

I)x+a=,y+b

2)x*a=,y*b

3)x-a=,y-b
4)cx=,cy=>a=,b

New definition:

Z ' ={xeZ, | 6€D(x,n) =1}

Multiplication over this set Z,"
has the cancellation property.




Z,={0,1,2,3,4,5}

Zé* = {1,5}
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We've got closure

Recall we proved that Z, was “closed”
under addition and multiplication?

What about Z,* under multiplication?

Fact: if a,b in Z,*, thena b in Z*

Proof: if gcd(a,n) = ged(b,n) = 1,
then gcd(a b, n) = 1
then gcd(a b mod n, n) = 1

Zi = {0 < x < 12 | ged(x,12) = 1}

={1,5,7,11}

w158 7| 1

Z5 = (1,2,3,4)
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For prime p, the set Z,” = Z, \ {0}

Proof:

It just follows from the
definition!

For prime p, all O < x < p satisfy
gcd(x,p) = 1

Euler Phi Function ¢(n)
o(n) = size of Z,

= number of 1 < k < n that
are relatively prime to n.

p prime
= Z={1,2,3,..p-1}

= ¢(p) = p-1




Z;; = {0 < x < 12 | ged(x,12) = 1}
={1,5,7,11}
$(12) = 4

w18 7|1

Theorem: if p,q distinct primes then
o(p 9) = (p-1)(q-1)

pq = # of numbers from 1 to pq
p = # of multiples of q up to pq

q = # of multiples of p up to pq
1 = # of multiple of both p and q up
To pq

®pq) =pq-p-q+1-=(p-1)q-1)

<t

Additive
and
Multiplicative

Inverses

Additive inverse of a mod n
= number b such that a+b=0 (mod n)

What is the additive inverse
of a = 342952340 in

Zn = 4230493243?

Answer: n - a
= 4230493243-342952340
=3887540903

Multiplicative inverse of a mod n
= number b such that a*b=1 (mod n)

Remember,
only defined for numbers a in Z*

Multiplicative inverse of a mod n
number b such that a*b=1 (mod n)

What is the multiplicative inverse
of a = 342952340 in

Z 4230493243 = Zy?

Answer: a'! = 583739113




How do you find
multiplicative inverses
fast ?

Theorem: given positive integers X, Y, there
exist integers r, s such that

rX+sY =gcd(X, Y)
and we can find these integers fast!
Now take n, and a in Z,*
gcd(a, n)?  ainZ* = gcd(a, n) =1
suppose ra + sn = 1

then ra =, 1
so,r=almodn

Theorem: given positive integers X, Y, there
exist integers r, s such that

rX +sY =gcdX, Y)
and we can find these integers fast!

How?

Extended Euclid Algorithm

Euclid's Algorithm for GCD

Euclid(A,B)
If B=0 then return A
else return Euclid(B, A mod B)

Euclid(67,29) 67 - 2*29 = 67 mod 29 = 9
Euclid(29,9) 29-3*9=29mod9 =2
Euclid(9,2) 9-4*2=9mod2 =1

Euclid(2,1) 2-2*1=2mod 1 =0

Euclid(1,0) outputs 1

Let <r,s> denote the number r*67 + s*29.
Calculate all intermediate values in this
representation.

67=<1,0> 29=<0,1>

Euclid(67,29) <1,0> - 2*<0,1> 9=<1,-2>
Euclid(29,9) <0,1> - 3*<1,-2> 2=<-3,7>
Euclid(9,2) <1,-2> - 4*<-3,7> 1=<13,-30>
Euclid(2,1) <-3,7> - 2*<13,-30> 0=<-29,67>

Euclid(1,0) outputs 1 = 13*%67 - 30*29

Finally, a puzzle...

You have a 5 gallon bottle,
a 3 gallon bottle,
and lots of water.

Can you measure out
exactly 4 gallons?




Diophantine equations

Does the equality
3x+by=4
have a solution where x,y are integers?

New bottles of water puzzle

You have a 6 gallon bottle,
a 3 gallon bottle,
and lots of water.

How can you measure out
exactly 4 gallons?

Theorem

The linear equation
ax+by=c

has an integer solution in x and y iff gcd(a,b)lc

The linear equation
ax+by=c
has an integer solution in x and y iff ged(a,b)|c

=>) gcd(a,b)|a and gecd(a,b)|b => gcd(a,b)l(a x + b y)

<z) gcd(a,b)lc =>c=z*gcd(a,b)
On the other hand, gcd(a,b) = x;a+y; b

zgcd(ab)=zx;a+zy, b

c=zx;a+zy; b

Hilbert's 10th problem

Hilbert asked for a universal method of solving all
Diophantine equations

P(x1,%5,...,x,)=0
with any number of unknowns and integer
coefficients.

In 1970 Y. Matiyasevich proved that the
Diophantine problem is unsolvable.

* Working modulo integer n

- Definitions of Z,, Z,"

+ Fundamental lemmas of +,-*,/
+ Extended Euclid Algorithm

- Euler phi function ¢(n) = |1Z,"|

Study Bee
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