

We will consider chance experiments with a <u>finite</u> number of possible outcomes w_1, w_2, \ldots, w_n

The sample space Ω of the experiment is the set of all possible outcomes. The roll of a die: $\Omega = \{1,2,3,4,5,6\}$

Each subset of a sample space is defined to be an event.

The event: $E = \{2,4,6\}$

Probability of a event

Let X be a random variable which denotes the value of the outcome of a certain experiment.

We will assign probabilities to the possible outcomes of an experiment.

We do this by assigning to each outcome w_j a nonnegative number $m(w_j)$ in such a way that $m(w_1) + ... + m(w_n)=1$

The function $m(w_i)$ is called the distribution function of the random variable X.

Probabilities

For any subset E of Ω , we define the probability of E to be the number P(E) given by

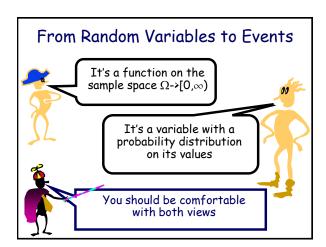
$$P(E) = \sum_{w \in E} m(w)$$
event
$$distribution$$

$$function$$

From Random Variables to Events

For any random variable X and value a, we can define the event E that X = a

$$P(E) = P(X=a) = P(\{t \in \Omega | X(t)=a\})$$



Example 1

Consider an experiment in which a coin is tossed twice.

$$\Omega$$
= {HH,TT,HT,TH}
m(HH)=m(TT)=m(HT)=m(TH)=1/4

Let $E = \{HH, HT, TH\}$ be the event that at least one head comes up. Then probability of E is

$$P(E) = m(HH)+m(HT)+m(TH) = 3/4$$

Notice that it is an immediate consequence $P(\{w\}) = m(w)$

Example 2

Three people, A, B, and C, are running for the same office, and we assume that one and only one of them wins. Suppose that A and B have the same chance of winning, but that C has only 1/2 the chance of A or B.

Let E be the event that either A or C wins.

$$P(E) = m(A)+m(C) = 2/5+1/5=3/5$$

Theorem

The probabilities satisfy the following properties:

$$P(\Omega) = 1$$

$$P(A \cup B) = P(A) + P(B)$$
, for disjoint A and B

$$P(A) = 1 - P(A)$$

$$P(A \cup B) = P(A) + P(B)$$
,
for disjoint A and B

Proof.

$$P(A \cup B) = \sum_{w \in A \cup B} m(w) =$$

$$\sum_{w\in A} m(w) + \sum_{w\in B} m(w) = P(A) + P(B)$$

More Theorems

For any events A and B

$$P(A) = P(A \cap B) + P(A \cap \overline{B})$$

For any events A and B

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Uniform Distribution

When a coin is tossed and the die is rolled, we assign an equal probability to each outcome.

The uniform distribution on a sample space containing n elements is the function m defined by

$$m(w) = 1/n$$

for every $w \in \Omega$

Example

Consider the experiment that consists of rolling a pair of dice. What is the probability of getting a sum of 7 or a sum of 11?

We assume that each of 36 outcomes is equally likely.

Example $S = \{ (1,1), (1,2), (1,3), (1,4), (1,5),$ (2,1), (2,2), (2,3), (2,4),(2,5)(3,1), (3,2),(3,3),(3,4)(3,5),(3,6),(4,1), (4,2),(4,3)(4,4),(4,5),(4,6),(5,5),(5,1), (5,2) (5,3),(5,4),(5,6)(6,3),(6,4),(6,1)(6,5),P(F)= 2 * 1/36 P(E)= 6 * 1/36 P(E ∪ F)= 8/36

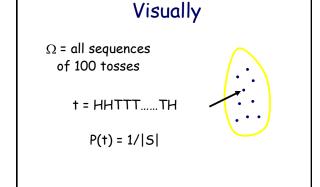
A fair coin is tossed 100

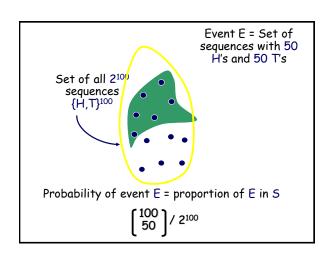
times in a row What is the probability that we get exactly half heads?

The sample space Ω is the set of all outcomes (sequences) {H,T}100

Each sequence in Ω is equally likely, and hence has probability

 $1/|\Omega|=1/2^{100}$





Birthday Paradox

How many people do we need to have in a room to make it a favorable bet (probability of success areater than 1/2) that two

bet (probability of success greater than 1/2) that two people in the room will have the same birthday?

And The Same Methods Again!

Sample space Ω = 365 \times

We must find sequences that have no duplication of birthdays.

Event $E = \{ w \in \Omega \mid \text{two numbers not the same } \}$

$$P(E) = \frac{365 \times 364 \times ... \times (365 - x + 1)}{365^{x}}$$

Infinite Sample Spaces

A coin is tossed until the first time that a head

Birthday Paradox

21

0.556

22

0.524

23

0.492

0.461

24

J.556

 $\Omega = \{1, 2, 3, 4, ...\}$

A distribution function: $m(n) = 2^{-n}$.

$$P = \sum_{w} m(w) = \frac{1}{2} + \frac{1}{4} + ... = 1$$

Infinite Sample Spaces

Let E be the event that the first time a head turns up is after an even number of tosses.

$$E = \{2, 4, 6, ...\}$$

$$P(E) = \frac{1}{4} + \frac{1}{16} + \frac{1}{64} + ... = \frac{1}{3}$$

Conditional Probability

turns up.

Consider our voting example: three candidates A, B, and C are running for office. We decided that A and B have an equal chance of winning and C is only 1/2 as likely to win as A.

Suppose that before the election is held, A drops out of the race.

What are new probabilities to the events B and C

P(B|A)=2/3

P(C|A)=1/3

Conditional Probability

Let Ω = $\{w_1, w_2, \ldots, w_r\}$ be the original sample space with distribution function $m(w_k)$. Suppose we learn that the event E has occurred. We want to assign a new distribution function $m(w_k \mid E)$ to reflect this fact.

It is reasonable to assume that the probabilities for w_k in E should have the same relative magnitudes that they had before we learned that E had occurred: $m(w_k \mid E) = c m(w_k)$, where c is some constant.

Also, if w_k is not in E, we want $m(w_k \mid E) = 0$

Conditional Probability

By the probability law:

$$\sum_{\Omega} m(w_k \mid E) = \sum_{E} m(w_k \mid E) = c \sum_{E} m(w_k) = 1$$

From here,

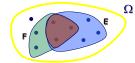
$$c = \frac{1}{\sum_{E} m(w_k)} = \frac{1}{P(E)}$$

$$m(w_k \mid E) = \frac{m(w_k)}{P(E)}$$

Conditional Probability

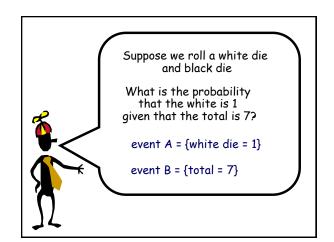
The probability of event F given event E is written $P(F \mid E)$ and is defined by

$$P(F \mid E) = \sum_{F \cap E} m(w_k \mid E) = \sum_{F \cap E} \frac{m(w_k)}{P(E)} = \frac{P(F \cap E)}{P(E)}$$



 $\begin{array}{c} \text{proportion} \\ \text{of } F \cap E \end{array}$

to E



$$P(A \mid B) = \frac{P(A \cap B)}{P(B)} = \frac{|A \cap B|}{|B|} = \frac{1}{6}$$

event A = {white die = 1} event B = {total = 7}

Independence!

A and B are independent events if

$$P(A \mid B) = P(A)$$

$$\Leftrightarrow$$

$$P(A \cap B) = P(A) P(B)$$

$$\Leftrightarrow$$

$$P(B \mid A) = P(B)$$

Silver and Gold

One bag has two silver coins, another has two gold coins, and the third has one of each

One bag is selected at random. One coin from it is selected at random. It turns out to be gold

What is the probability that the other coin is gold?

Let G_1 be the event that the first coin is gold

 $P(G_1) = 1/2$

Let G_2 be the event that the second coin is gold

 $P(G_2 | G_1) = P(G_1 \cap G_2) / P(G_1)$

= (1/3) / (1/2)

= 2/3

Note: G_1 and G_2 are not independent

Monty Hall Problem

The host show hides a car behind one of 3 doors at random. Behind the other two doors are goats.

You select a door.

Announcer opens one of others with no prize.

You can decide to keep or switch.

What to do? To switch or not to switch?

This is Tricky?

We are inclined to think:

"After one door is opened, others are equally likely..."

Monty Hall Problem

Sample space = { car behind door 1, car behind door 2, car behind door 3 }

Each has probability 1/3

Staying

Switching

we win if we choose the correct door

we win if we choose the incorrect door

P(choosing correct door) = 1/3

P(choosing incorrect door) = 2/3

Monty Hall Problem

Let the doors be called X, Y and Z.

Let Cx, Cy, Cz be the events that the car is behind door X and so on.

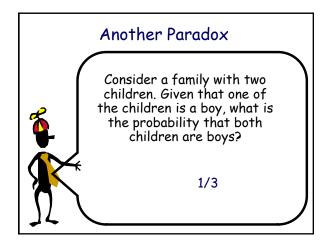
Let Hx, Hy, Hz be the events that the host opens door X and so on.

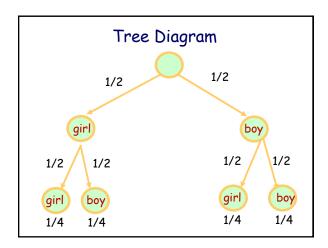
Supposing that you choose door X, the possibility that you win a car if you switch is

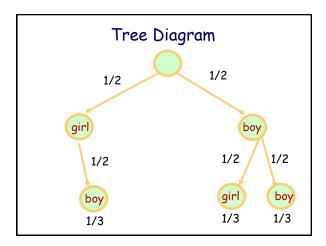
 $P(Hz \cap Cy) + P(Hy \cap Cz) =$

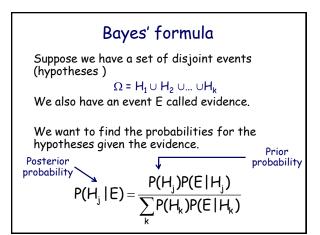
P(Hz|Cy) P(Cy) + P(Hy|Cz) P(Cz) =

 $1 \times 1/3 + 1 \times 1/3 = 2/3$









Expected Value

A Quick Calculation...

I flip a coin 3 times. What is the expected (average) number of heads?

Let X denote the number of heads which appear: X = 0, 1, 2 and 3.

The corresponding probabilities are 1/8, 3/8, 3/8, and 1/8.

 $E(X) = (1/8)\times0 + (3/8)\times1 + (3/8)\times2 + (1/8)\times3 = 1.5$

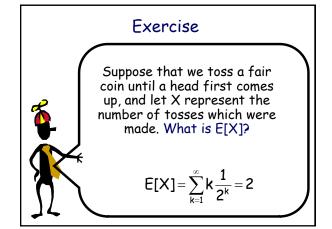
This is a frequency interpretation of probability

Definition: Expectation

The expectation, or expected value of a random variable X is written as E(X) or E[X], and is

$$\mathsf{E}[\mathsf{X}] = \sum_{\mathsf{X}} \mathsf{x} \, \mathsf{m}(\mathsf{x})$$
$$\mathsf{x} \in \Omega$$

with a sample space Ω and a distribution function m(x).



Language of Probability
Events
P(A | B)
Independence
Random Variables
Expectation

Here's What You Need to Know...