

http://www.cs.princeton.edu/~chazelle/pubs/algorithm.html

"Computing (The Algorithm) will be the most disruptive scientific paradigm since quantum mechanics."

If Google is a religion,

what is its God?

It would have to be The Algorithm.

Jan. 12, 2006, The Economist

Plan

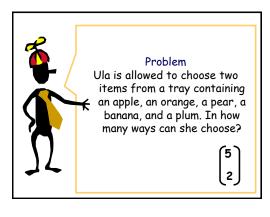
- Counting with generating functions
- · Solving the Diophantine equations
- Proving combinatorial identities

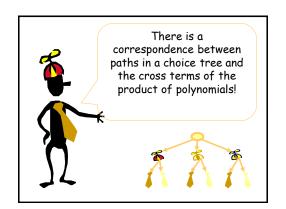
Applied Combinatorics, by Alan Tucker

Generating function ology, by Herbert Wilf

Counting with Generating Functions

We start with George Polya's approach





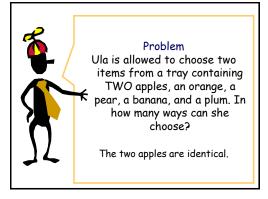
Counting with Generating Functions

(0 apple + 1 apple)(0 orange + 1 orange) (0 pear + 1 pear)(0 banana + 1 banana) (0 plum + 1 plum)

In this notation, apple² stand for choosing 2 apples., and + stands for an exclusive or.

$$(1+x)^5 = (1+x)(1+x)(1+x)(1+x)(1+x)$$

Take the coefficient of x^2 .



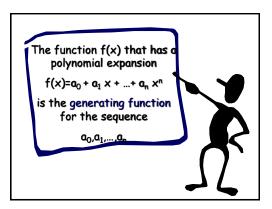
Counting with Generating Functions

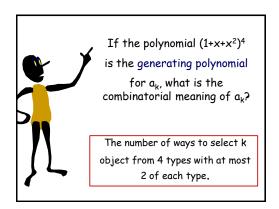
(0 apple + 1 apple + + 2 apple) (0 orange + 1 orange)(0 pear + 1 pear) (0 banana + 1 banana)(0 plum + 1 plum)

$$(1+x+x^2)(1+x)(1+x)(1+x)(1+x)$$

Take the coefficient of x^2 .

11





Counting with Generating Functions

 $(1+x+x^2) (1+x+x^2+x^3) (1+x+x^2+x^3+x^4)$ apple cheese raspberry

 $= 1+3x+6x^2+9x^3+11x^4+11x^5+9x^6+6x^7+3x^8+x^9$

The coefficient by x^8 shows that there are only 3 orders for 8 pastries.

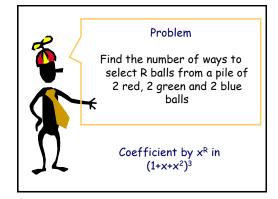
Note, we solve the whole parameterized family of problems!!!

Counting with Generating Functions

 $(1+x+x^2)$ $(1+x+x^2+x^3)$ $(1+x^2+x^4)$ apple cheese raspberry

 $= 1+2x+4x^2+5x^3+6x^4+6x^5+5x^6+4x^7+2x^8+x^9$

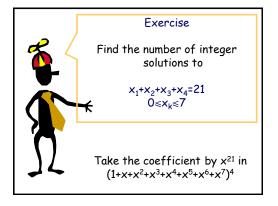
The coefficient by x^8 shows that there are only 2 possible orders.

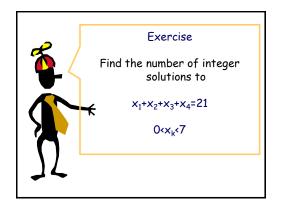


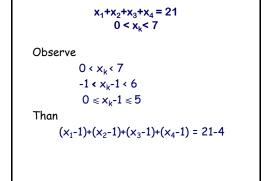
Coefficient by x^{R} in $(1+x+x^{2})^{3}$ $(1+x+x^{2})^{3} = (x^{0}+x^{1}+x^{2})(x^{0}+x^{1}+x^{2})(x^{0}+x^{1}+x^{2})$ $x^{e_{1}}x^{e_{2}}x^{e_{3}}$

Find the number of ways to select R balls from a pile of 2 red, 2 green and 2 blue balls $x^{e_1}x^{e_2}x^{e_3}$ $e_1 + e_2 + e_3 = R$

 $0 \le e_k \le 2$



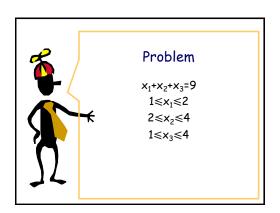


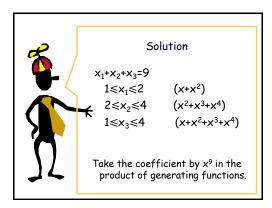


The problem is reduced to solving $y_1+y_2+y_3+y_4=17, \qquad 0 \leqslant y_k \leqslant 5$ Solution: take the coefficient by x^{17} in $(1+x+x^2+x^3+x^4+x^5)^4$ which is 20

 $x_1+x_2+x_3+x_4=21$

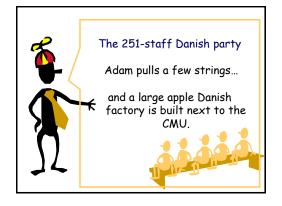
 $0 < x_k < 7$

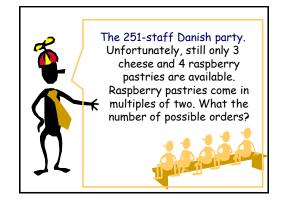


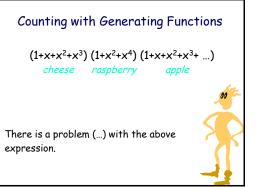


Two observations

- 1. A generating function approach is designed to model a selection of all possible numbers of objects.
- 2. It can be used not only for counting but for solving the linear Diophantine equations

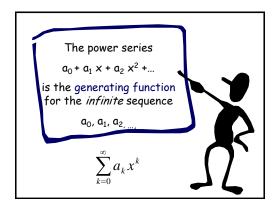


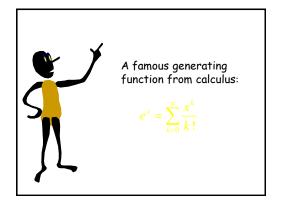


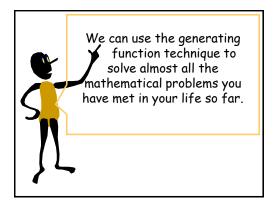


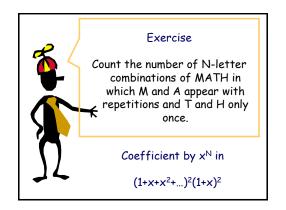
Counting with Generating Functions

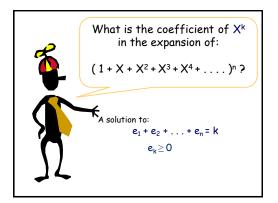
$$(1+x+x^2+x^3) (1+x^2+x^4) (1+x+x^2+x^3+...)=$$
 $cheese$ $raspberry$ $apple$
 $(1+x+2x^2+2x^3+2x^4+2x^5+x^6+x^7) (1+x+x^2+x^3+...)$
 $=1+2x+4x^2+6x^3+8x^4+...$

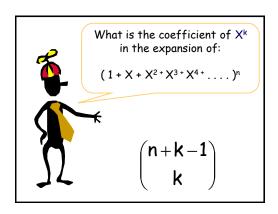


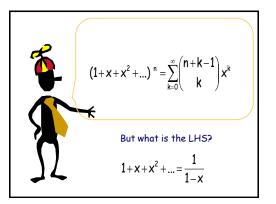






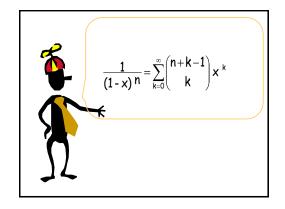




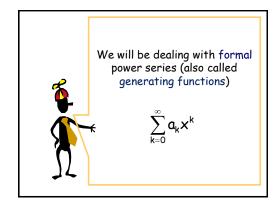


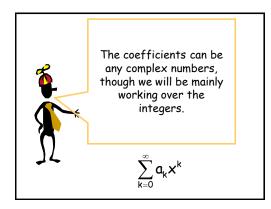
$$y=1+x+x^{2}+...$$

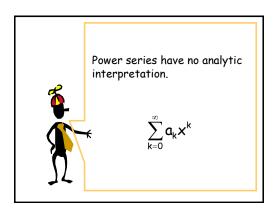
 $x y = x + x^{2} +...$
 $y-x y = 1$
 $y(1-x) = 1$
 $\frac{1}{1-x} = y = 1+x+x^{2} +...$

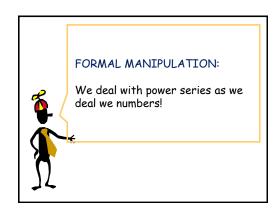


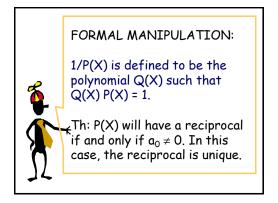
$$1 + x + x^{2} + ... + x^{n-1} = \frac{x^{n} - 1}{x - 1}$$
(when $x \neq 1$)
$$1 + x + x^{2} + ... + x^{n-1} + x^{n} + ... = \frac{1}{1 - x}$$
(when $|x| < 1$)

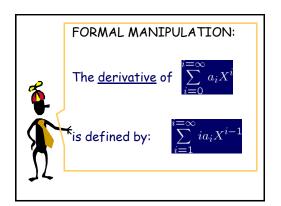












Power Series = Generating Function

Given a sequence of integers $a_0,\,a_1,\,...,\,a_n$

We will associate with it a function

$$f(x) = \sum_{k=0}^{\infty} a_k x^k$$

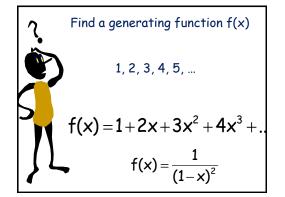
The On-Line Encyclopedia of Integer Sequences

Generating Functions

Sequence: 1, 1, 1, 1, ...

Generating function:

$$f(x) = \sum_{k=0}^{\infty} a_k x^k = \sum_{k=0}^{\infty} x^k = \frac{1}{1-x}$$



Generating Functions

$$f(x) = \sum_{k=0}^{\infty} F_k x^k$$

$$F_0 \!\!=\!\! 0, \, F_1 \!\!=\!\! 1,$$

$$F_n \!\!=\!\! F_{n\!-\!1} \!\!+\!\! F_{n\!-\!2} \text{ for } n \!\!\geq\!\! 2$$

$$f(x) = \sum_{k=0}^{\infty} F_k x^k$$

$$(x+x^2+2 \ x^3+3 \ x^4+5 \ x^5+8 \ x^6+13 \ x^7+...)(1-x-x^2)$$

$$= x + x^2 + 2 \ x^3 + 3 \ x^4 + 5 \ x^5 + 8 \ x^6 + 13 \ x^7+...$$

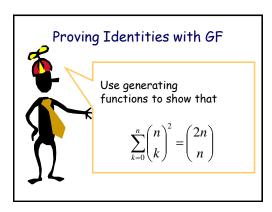
$$- x^2 - x^3 - 2 \ x^4 - 3 \ x^5 - 5 \ x^6 - 8 \ x^7-...$$

$$- x^3 - x^4 - 2 \ x^5 - 3 \ x^6 - 5 \ x^7-...$$

$$= x$$

$$f(x) = \sum_{k=0}^{\infty} F_k x^k = \frac{x}{1-x-x^2}$$

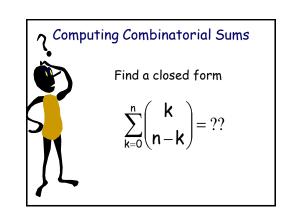


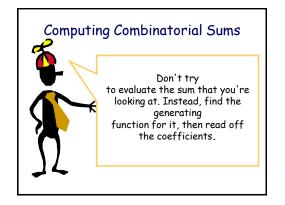


$$\sum_{k=0}^{n} \binom{n}{k}^2 = \binom{2n}{n}$$
Prove by induction
Prove algebraically
Prove combinatorially
Prove by Manhattan walk (see previous lecture)

$$\sum_{k=0}^{n} \binom{n}{k}^{2} = \binom{2n}{n}$$
Consider the right hand side:
$$\binom{2n}{n} = [x^{n}](1+x)^{2n}$$
Coefficient by x^{n}

$$\sum_{k=0}^{n} \binom{n}{k}^2 = \binom{2n}{n}$$
Use the binomial theorem to obtain
$$(1+x)^{2n} = \binom{n}{0} + \binom{n}{1}x + \dots + \binom{n}{n}x^n)^2$$
Compute a coefficient of x^k





$$\sum_{k=0}^{n} {k \choose n-k} = ??$$

Multiply it by x^n and sum it over n

$$\sum_{n=0}^{\infty} x^n \sum_{k=0}^{n} \binom{k}{n-k}$$

Interchange the sums

$$\sum_{n=0}^{\infty} x^n \sum_{k=0}^{n} {k \choose n-k} = \sum_{k=0}^{\infty} \sum_{n=k}^{\infty} x^n {k \choose n-k}$$

Take r = n - k as the new dummy variable of inner summation

$$\sum_{k=0}^{\infty} \sum_{n=k}^{\infty} x^n \binom{k}{n-k} = \sum_{k=0}^{\infty} \sum_{r=0}^{k} x^{r+k} \binom{k}{r}$$

We recognize the inner sum as $x^k (1 + x)^k$

$$\sum_{k=0}^{\infty} x^k (1+x)^k$$

This is a geometric series

$$\sum_{k=0}^{\infty} x^{k} (1+x)^{k} = \frac{1}{1-x(1+x)} = \frac{1}{1-x-x^{2}}$$

The RHS is our old friend ...

What did we find?

$$\sum_{n=0}^{\infty} x^{n} \sum_{k=0}^{n} {k \choose n-k} = \frac{1}{1-x-x^{2}}$$

$$\sum_{k=0}^{\infty} F_k x^k = \frac{x}{1-x-x^2}$$

$$\sum_{n=0}^{\infty} F_{n+1} x^n = \frac{1}{1 - x - x^2}$$

What did we find?

$$\sum_{n=0}^{\infty} x^{n} \sum_{k=0}^{n} {k \choose n-k} = \sum_{n=0}^{\infty} F_{n+1} x^{n}$$

$$\sum_{k=0}^{n} \binom{k}{n-k} = F_{n+1}$$

Generating Functions

It's one of the most important mathematical ideas of all time!

- Counting with generating functions
 Solving the Diophantine equations
 Proving combinatorial identities