Great Theoretical Ideas In Computer Science				
Danny Sleator		CS 15-251	Spring 2010	
Lecture 3	Jan 19, 2010	Carnegie Mellon University		

Unary and Binary

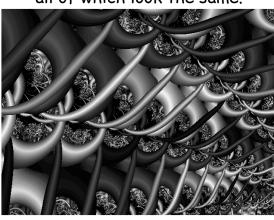
Oh No!

Homework #1 is due today at 11:59pm Give yourself sufficient time to make PDF

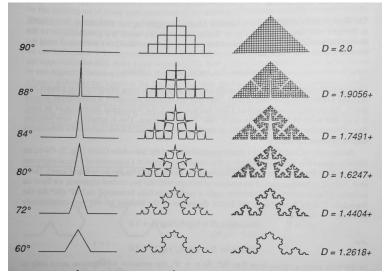
Quiz #1 is next Thursday during lecture

More on Fractals

Fractals are geometric objects that are selfsimilar, i.e. composed of infinitely many pieces, all of which look the same.



The Koch Family of Curves



Fractal Dimension

We can break a line segment into N selfsimilar pieces, and each of which can be magnified by a factor of N to yield the original segment.

We can break a square into N² self-similar pieces, and each of which can be magnified by a factor of N.

Fractal Dimension

The dimension is the exponent of the number of self-similar pieces with magnification factor into which the figure may be broken.

$$\#$$
 of self – similar pieces = mf^{dim}

Hausdorff dimension

$$dim = \frac{\ln (\# \text{ of self - similar pieces})}{\ln (\text{magnification factor})}$$

Fractal Dimension of the Plane

We can break a square into N² self-similar pieces, and each of which can be magnified by a factor of N.

$$\dim = \frac{\ln(N^2)}{\ln(N)} = 2$$

Fractal Dimension of the Koch Curve

We begin with a straight line of length 1

Remove the middle third of the line, and replace it with two lines that each have the same length

Fractal Dimension of the Koch Curve

 $dim = \frac{ln (\# of self - similar pieces)}{ln (magnification factor)}$

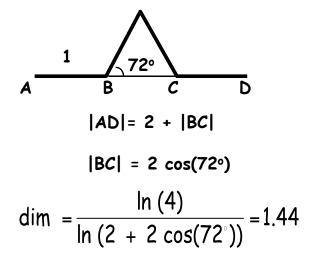
$$dim = \frac{ln(4)}{ln(3)} = 1.26$$

The Koch Family of Curves

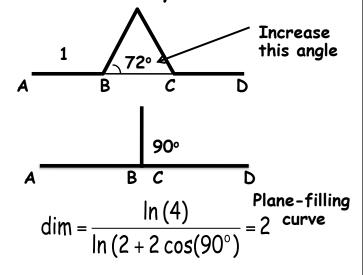


What if we increase that angle but keep all sides of the equal length?

The Koch Family of Curves



The Koch Family of Curves



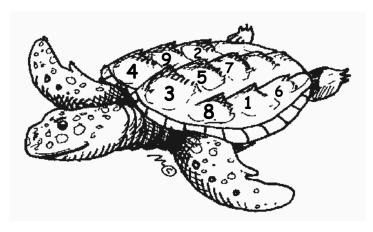
Unary and Binary

How to play the 9 stone game?

9 stones, numbered 1-9
Two players alternate moves.
Each move a player gets to take a new stone

Any subset of 3 stones adding to 15, wins.

Magic Square: Brought to humanity on the back of a tortoise from the river Lo in the days of Emperor Yu in ancient China



Magic Square: Any 3 in a vertical, horizontal, or diagonal line add up to 15.

4	9	2
3	5	7
8	1	6

Conversely, any 3 that add to 15 must be on a line.

4	9	2
3	5	7
8	1	6

TIC-TAC-TOE on a Magic Square Represents The Nine Stone Game

Alternate taking squares 1-9.

Get 3 in a row to win.

4	9	2
3	5	7
8	1	6

Basic Idea of This Lecture

Don't stick with the representation in which you encounter problems!

Always seek the more useful one!

This idea requires a lot of practice

Prehistoric Unary

1

2

3

4

Consider the problem of finding a formula for the sum of the first n numbers

You already used induction to verify that the answer is $\frac{1}{2}$ n(n+1)

A different approach...

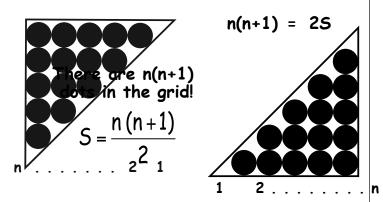
$$1 + 2 + 3 + ... + n-1 + n = 5$$

$$n + n-1 + n-2 + ... + 2 + 1 = 5$$

$$n+1 + n+1 + n+1 + ... + n+1 + n+1 = 25$$

$$n(n+1) = 25$$

$$S = \frac{n(n+1)}{2}$$



nth Triangular Number

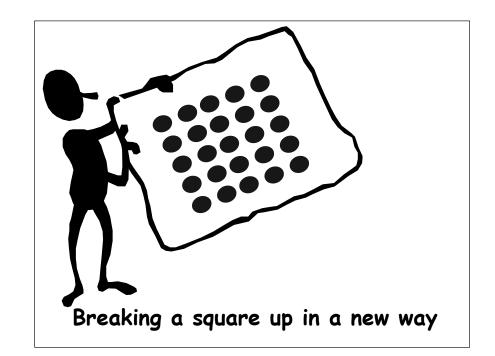
$$\Delta_n = 1 + 2 + 3 + \dots + n-1 + n$$

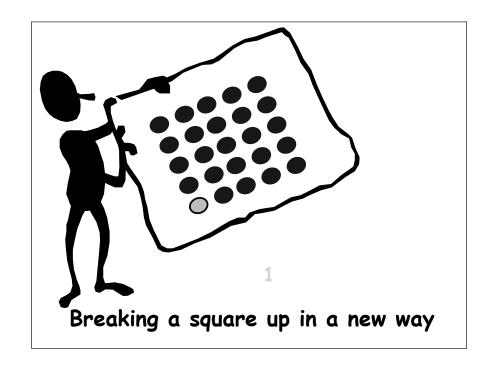
$$= n(n+1)/2$$

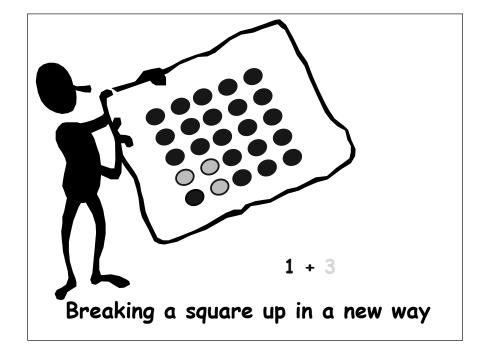
nth Square Number

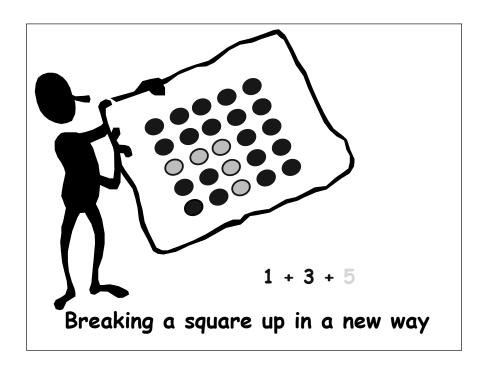
$$n = n^2$$

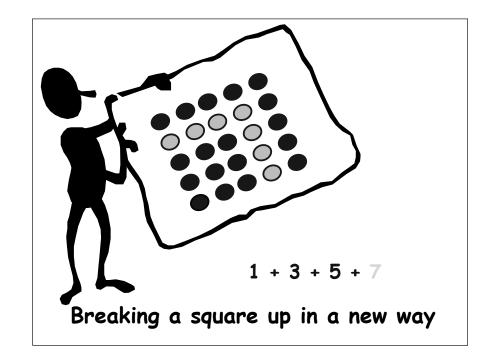
$$= \Delta_n + \Delta_{n-1}$$

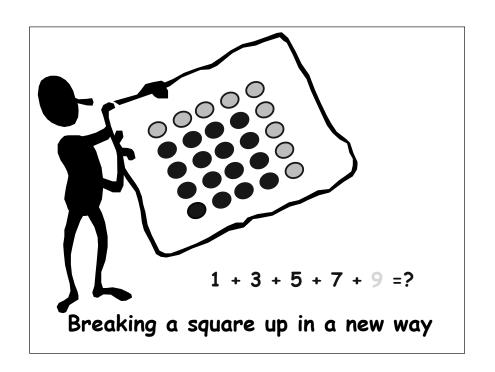


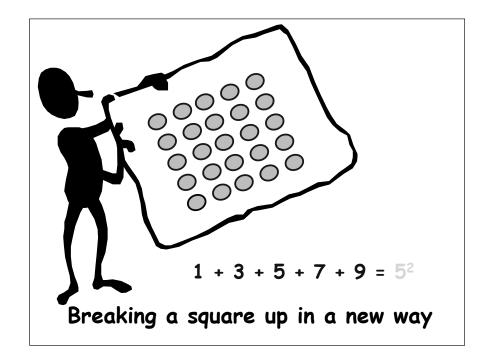


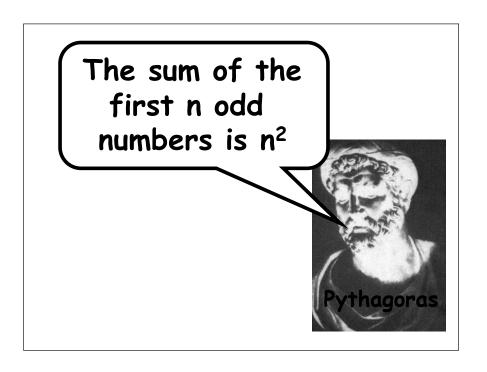








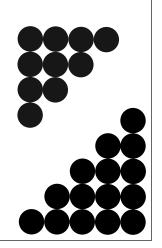




Here is an alternative dot proof of the same sum....

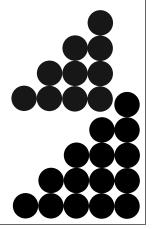
nth Square Number

$$\int_{n}^{\infty} = \Delta_{n} + \Delta_{n-1}$$
$$= n^{2}$$



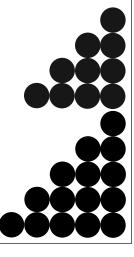
nth Square Number

$$\int_{n}^{\infty} = \Delta_{n} + \Delta_{n-1}$$
$$= n^{2}$$



nth Square Number

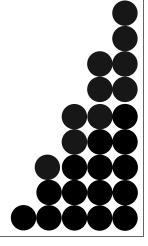
$$\tilde{n} = \Delta_n + \Delta_{n-1}$$



nth Square Number

$$\tilde{n} = \Delta_n + \Delta_{n-1}$$

= Sum of first n odd numbers

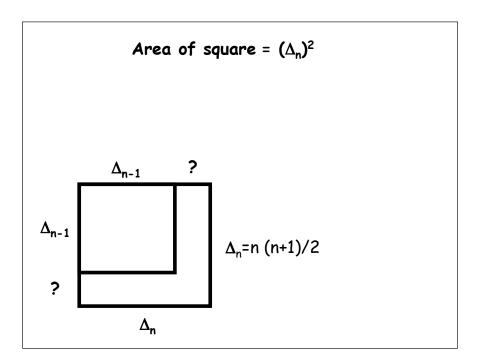


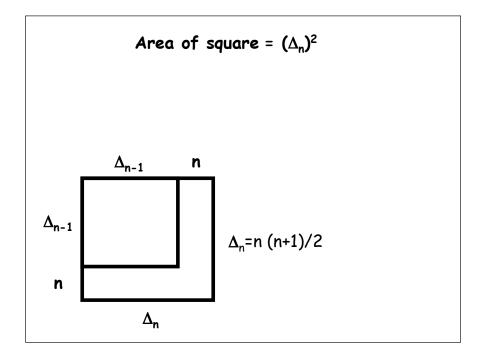
We find a formula for the sum of the first n cubes.

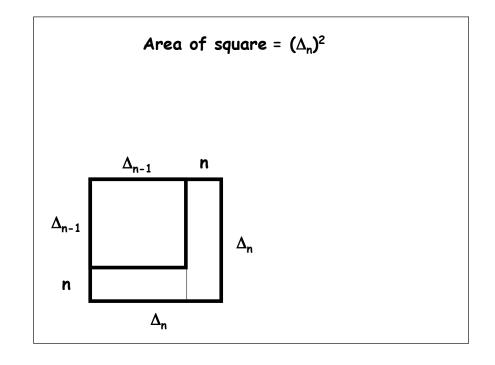
Area of square =
$$(\Delta_n)^2$$

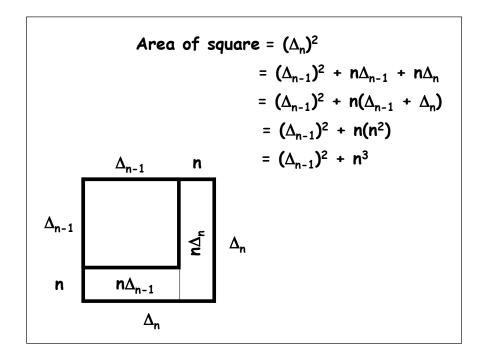
$$\Delta_n = n (n+1)/2$$

$$\Delta_n$$









$$(\Delta_n)^2 = n^3 + (\Delta_{n-1})^2$$

= $n^3 + (n-1)^3 + (\Delta_{n-2})^2$
= $n^3 + (n-1)^3 + (n-2)^3 + (\Delta_{n-3})^2$
= $n^3 + (n-1)^3 + (n-2)^3 + ... + 1^3$

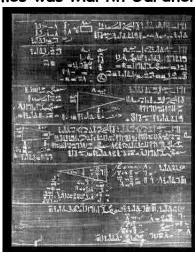
$$(\Delta_n)^2 = 1^3 + 2^3 + 3^3 + ... + n^3$$

$$= [n(n+1)/2]^2$$

Can you find a formula for the sum of the first n squares?

Babylonians needed this sum to compute the number of blocks in their pyramids

Rhind Papyrus
Scribe Ahmes was Martin Gardner of his day!



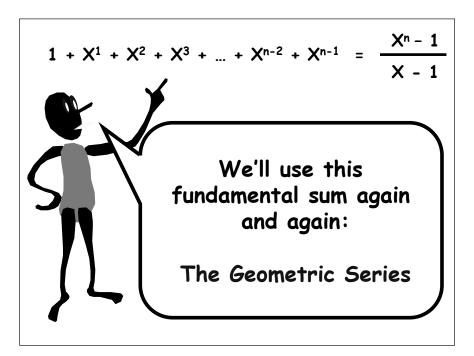
Rhind Papyrus

A man has 7 houses,
Each house contains 7 cats,
Each cat has killed 7 mice,
Each mouse had eaten 7 ears of spelt,
Each ear had 7 grains on it.
What is the total of all of these?

Sum of powers of 7

What is a closed form of the sum of powers of integers?

(when $x \neq 1$)



Proof

$$(X-1) (1 + X^{1} + X^{2} + X^{3} + ... + X^{n-2} + X^{n-1})$$

$$= X^{1} + X^{2} + X^{3} + ... + X^{n-1} + X^{n}$$

$$= 1 - X^{1} - X^{2} - X^{3} - ... - X^{n-2} - X^{n-1}$$

$$= X^{n} - 1$$

$$1 + X + X^{2} + ... + X^{n-1} = \frac{X^{n} - 1}{X - 1}$$

Geometric Series for x=2

$$1+2+4+...+2^{n-1}=2^n-1$$

Geometric Series for $x=\frac{1}{2}$

$$1 + \frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2^n} = 2 - \frac{1}{2^n}$$

Two Case Studies

Bases and Representation

BASE X Representation

S =
$$a_{n-1}$$
 a_{n-2} ... a_1 a_0 represents the number:
 a_{n-1} X^{n-1} + a_{n-2} X^{n-2} + . . . + a_0 X^0

Base 2 [Binary Notation] 101 represents: $1(2)^2 + 0(2^1) + 1(2^0)$

= 00000

Base 7

015 represents: $0 (7)^2 + 1 (7^1) + 5 (7^0)$

Bases In Different Cultures

Sumerian-Babylonian: 10, 60, 360

Egyptians: 3, 7, 10, 60

Maya: 20

Africans: 5, 10 French: 10, 20

English: 10, 12, 20

BASE X Representation

S = $(a_{n-1} a_{n-2} \dots a_1 a_0)_X$ represents the number:

$$a_{n-1} X^{n-1} + a_{n-2} X^{n-2} + \dots + a_0 X^0$$

Largest number representable in base-X with n "digits"

=
$$(X-1 \ X-1 \ X-1 \ X-1 \ X-1 \ ... \ X-1)_X$$

= $(X-1)(X^{n-1} + X^{n-2} + ... + X^0)$
= $(X^n - 1)$

Fundamental Theorem For Binary

Each of the numbers from 0 to 2ⁿ-1 is uniquely represented by an n-bit number in binary

k uses $\lceil \log_2(k+1) \rceil = \lfloor \log_2 k \rfloor + 1 \text{ digits}$

Fundamental Theorem For Base X

Each of the numbers from 0 to X^n-1 is uniquely represented by an n-"digit" number in base X

k uses $\lfloor \log_X k \rfloor + 1$ digits in base X

X > 0

Proof of the Uniqueness

Let the integer Z has two representations

$$Z = a_{n-1} X^{n-1} + a_{n-2} X^{n-2} + ... + a_1 X + a_0$$
 and

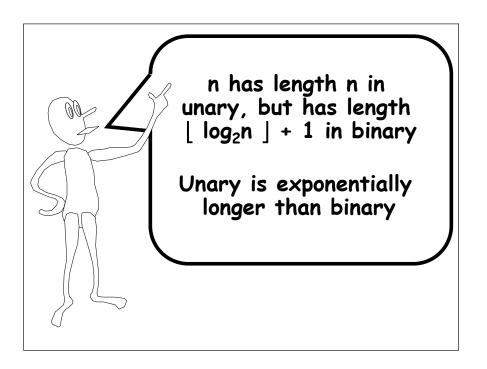
$$Z = b_{m-1} X^{m-1} + b_{m-2} X^{m-2} + ... + b_1 X + b_0$$

This implies that $a_0 = b_0 \pmod{X}$

and thus $a_0 = b_0$, since all coefficients are $\langle X \rangle$

We continue in similar manner for a_1 and b_1 : $a_1 X = b_1 X \pmod{X^2}$, so $a_1 = b_1$.

And so on. This olso proofs that m = n.



Other Representations: Egyptian Base 3

Conventional Base 3: Each digit can be 0, 1, or 2

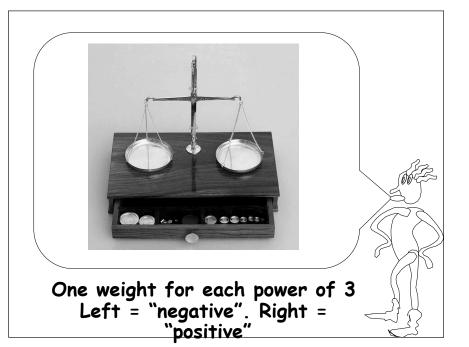
Here is a strange new one: Egyptian Base 3 uses -1, 0, 1

Example: $(1 - 1 - 1)_{EB3} = 9 - 3 - 1 = 5$

We can prove a unique representation theorem

We can prove a unique representation theorem

How could this be Egyptian? Historically, negative numbers first appear in the writings of the Hindu mathematician Brahmagupta (628 AD)



- Unary and Binary
- Triangular Numbers
- Dot proofs

•
$$(1+x+x^2 + ... + x^{n-1}) = (x^n - 1)/(x-1)$$

- Base-X representations
- unique binary representations
- proof for no-leading zero binary
- k uses $\lfloor \log_2 k \rfloor + 1 = \lceil \log_2 (k+1) \rceil$ digits in base 2

Largest length n number in base

Two Case Studies

Bases and Representation

Solving Recurrences using a good representation

Example

$$T(1) = 1$$

 $T(n) = 4T(n/2) + n$

Notice that T(n) is inductively defined only for positive powers of 2, and undefined on other values

$$T(1) = 1$$
 $T(2) = 6$ $T(4) = 28$ $T(8) = 120$

Give a closed-form formula for T(n)

Technique 1

Guess Answer, Verify by Induction

$$T(1) = 1$$
, $T(n) = 4 T(n/2) + n$

Base Case: G(1) = 1 and T(1) = 1

Induction Hypothesis: T(x) = G(x) for x < n

Hence: $T(n/2) = G(n/2) = 2(n/2)^2 - n/2$

$$T(n) = 4 T(n/2) + n$$

$$= 4 G(n/2) + n$$

$$= 4 [2(n/2)^2 - n/2] + n$$

$$= 2n^2 - 2n + n$$

 $= 2n^2 - n = G(n)$

Guess:
$$G(n) = 2n^2 - n$$

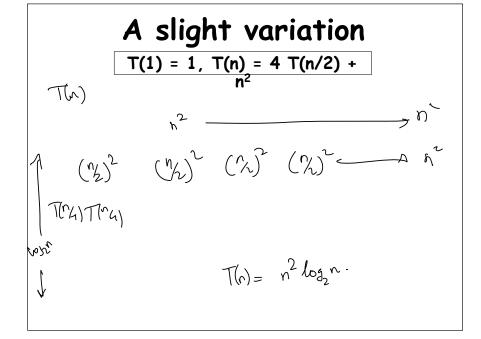
Technique 2 Guess Form, Calculate Coefficients

Guess:
$$T(1) = 1$$
, $T(n) = 4$ $T(n/2) + C$
for some a,b,c

Calculate:
$$T(1) = 1$$
, so $a + b + c = 1$
 $T(n) = 4 T(n/2) + n$
 $an^2 + bn + c = 4 [a(n/2)^2 + b(n/2) + c] + n$
 $= an^2 + 2bn + 4c + n$
 $(b+1)n + 3c = 0$

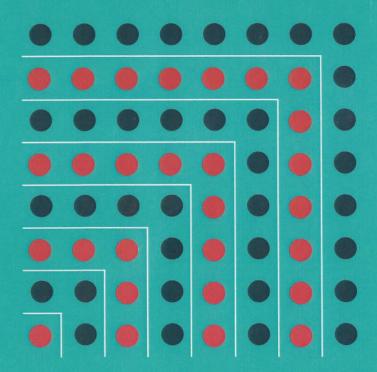
Therefore:
$$b = -1$$
 $c = 0$ $a = 2$

Technique 3 The Recursion Tree Approach T(1) = 1, T(n) = 4 T(n/2) + n $T(\sqrt{3}) + (\sqrt{3}) +$



PROOFS WITHOUT WORDS

EXERCISES IN VISUAL THINKING



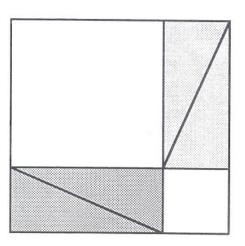
 $1+3+5+\cdots+(2n-1)=n^2$

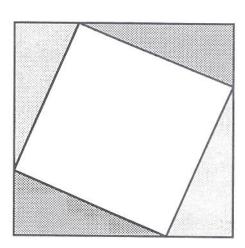
E & S QA 90 .N385 1993

ROGER B. NELSEN

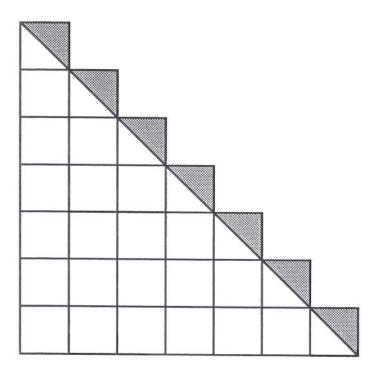
CLASSROOM RESOURCE MATERIALS / NUMBER I
THE MATHEMATICAL ASSOCIATION OF AMERICA

The Pythagorean Theorem I





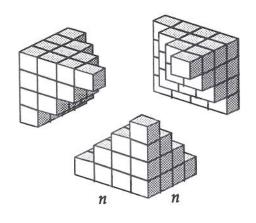
Sums of Integers II

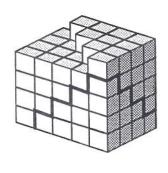


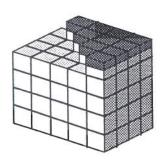
$$1 + 2 + \cdots + n = \frac{n^2}{2} + \frac{n}{2}$$

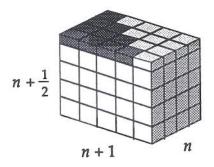
Sums of Squares I

$$1^2 + 2^2 + \cdots + n^2 = \frac{1}{3} n(n+1)(n+\frac{1}{2})$$









-Man-Keung Siu

Sums of Cubes I

$$1^3 + 2^3 + 3^3 + \dots + n^3 = (1 + 2 + 3 + \dots + n)^2$$

