15-251

Some Great Theoretical Ideas in Computer Science for
Deterministic Finite Automata

Lecture 19 (March 23, 2009)
A machine so simple that you can understand it in less than one minute
The machine accepts a string if the process ends in a double circle.
The machine accepts a string if the process ends in a double circle.

Anatomy of a Deterministic Finite Automaton

- **States**
 - q_0
 - q_1
 - q_2

- **Start state** (q_0)
- **Accept states** (F)
- **Transitions**
 - 0 from q_0 to q_1
 - 0 from q_1 to q_2
 - 1 from q_1 to q_1
 - 0,1 from q_2 to q_2
Anatomy of a Deterministic Finite Automaton

The **alphabet** of a finite automaton is the set where the symbols come from: \{0, 1\}

The **language** of a finite automaton is the set of strings that it accepts.
L(M) = All strings of 0s and 1s

The Language of Machine M
\[L(M) = \{ w \mid w \text{ has an even number of 1s} \} \]
Notation

An alphabet Σ is a finite set (e.g., $\Sigma = \{0,1\}$)

A string over Σ is a finite-length sequence of elements of Σ

For x a string, $|x|$ is the length of x

The unique string of length 0 will be denoted by ε and will be called the empty or null string

A language over Σ is a set of strings over Σ
A finite automaton is a 5-tuple $M = (Q, \Sigma, \delta, q_0, F)$

- Q is the set of states
- Σ is the alphabet
- $\delta : Q \times \Sigma \rightarrow Q$ is the transition function
- $q_0 \in Q$ is the start state
- $F \subseteq Q$ is the set of accept states

$L(M) =$ the language of machine M
$= \text{set of all strings machine } M \text{ accepts}$
\[M = (Q, \Sigma, \delta, q_0, F) \]

where

\[Q = \{q_0, q_1, q_2, q_3\} \]

\[\Sigma = \{0, 1\} \]

\[\delta : Q \times \Sigma \rightarrow Q \text{ transition function} \]

\[q_0 \in Q \text{ is start state} \]

\[F = \{q_1, q_2\} \subseteq Q \text{ accept states} \]

\[\begin{array}{c|cc}
\delta & 0 & 1 \\
\hline
q_0 & q_0 & q_1 \\
q_1 & q_2 & q_2 \\
q_2 & q_3 & q_2 \\
q_3 & q_0 & q_2 \\
\end{array} \]
Build an automaton that accepts all and only those strings that contain 001
Build an automaton that accepts all strings whose length is divisible by 2 but not 3
A language is regular if it is recognized by a deterministic finite automaton

$L = \{ w \mid w \text{ contains 001} \}$ is regular

$L = \{ w \mid w \text{ has an even number of 1s} \}$ is regular
Union Theorem

Given two languages, L_1 and L_2, define the **union of L_1 and L_2** as

$$L_1 \cup L_2 = \{ w | w \in L_1 \text{ or } w \in L_2 \}$$

Theorem: The union of two regular languages is also a regular language.
Theorem: The union of two regular languages is also a regular language.

Proof Sketch: Let

$M_1 = (Q_1, \Sigma, \delta_1, q_0^1, F_1)$ be finite automaton for L_1 and

$M_2 = (Q_2, \Sigma, \delta_2, q_0^2, F_2)$ be finite automaton for L_2

We want to construct a finite automaton $M = (Q, \Sigma, \delta, q_0, F)$ that recognizes $L = L_1 \cup L_2$.
Idea: Run both M_1 and M_2 at the same time!

$Q =$ pairs of states, one from M_1 and one from M_2

$= \{ (q_1, q_2) \mid q_1 \in Q_1 \text{ and } q_2 \in Q_2 \}$

$= Q_1 \times Q_2$
Theorem: The union of two regular languages is also a regular language.
Automaton for Union
Automaton for Intersection
Theorem: The union of two regular languages is also a regular language

Corollary: Any finite language is regular
The Regular Operations

Union: $A \cup B = \{ w | w \in A \text{ or } w \in B \}$

Intersection: $A \cap B = \{ w | w \in A \text{ and } w \in B \}$

Reverse: $A^R = \{ w_1 \ldots w_k | w_k \ldots w_1 \in A \}$

Negation: $\neg A = \{ w | w \notin A \}$

Concatenation: $A \cdot B = \{ vw | v \in A \text{ and } w \in B \}$

Star: $A^* = \{ w_1 \ldots w_k | k \geq 0 \text{ and each } w_i \in A \}$
Regular Languages Are Closed Under The Regular Operations

We have seen part of the proof for Union. The proof for intersection is very similar. The proof for negation is easy.
The “Grep” Problem

Input: Text T of length t, string S of length n
Problem: Does string S appear inside text T?
Naïve method:

$ a_1, a_2, a_3, a_4, a_5, \ldots, a_t $

Cost: Roughly nt comparisons
Automata Solution

Build a machine M that accepts any string with S as a consecutive substring

Feed the text to M

Cost: t comparisons + time to build M

As luck would have it, the Knuth, Morris, Pratt algorithm builds M quickly
Real-life Uses of DFAs

- Grep
- Coke Machines
- Thermostats (fridge)
- Elevators
- Train Track Switches
- Lexical Analyzers for Parsers
Are all languages regular?
Consider the language \(L = \{ a^n b^n \mid n > 0 \} \)
i.e., a bunch of a’s followed by an equal number of b’s

No finite automaton accepts this language

Can you prove this?
$a^n b^n$ is not regular. No machine has enough states to keep track of the number of a’s it might encounter.
That is a fairly weak argument

Consider the following example...
L = strings where the # of occurrences of the pattern \textit{ab} is equal to the number of occurrences of the pattern \textit{ba}

Can’t be regular. No machine has enough states to keep track of the number of occurrences of \textit{ab}
M accepts only the strings with an equal number of ab’s and ba’s!
Let me show you a professional strength proof that $a^n b^n$ is not regular...
Pigeonhole principle:
Given n boxes and $m > n$ objects, at least one box must contain more than one object.

Letterbox principle:
If the average number of letters per box is x, then some box will have at least x letters (similarly, some box has at most x).
Theorem: \(L = \{ a^n b^n \mid n > 0 \} \) is not regular

Proof (by contradiction):
Assume that \(L \) is regular
Then there exists a machine \(M \) with \(k \) states that accepts \(L \)
For each \(0 \leq i \leq k \), let \(S_i \) be the state \(M \) is in after reading \(a^i \)
\(\exists i, j \leq k \) such that \(S_i = S_j \), but \(i \neq j \)
\(M \) will do the same thing on \(a^i b^i \) and \(a^j b^i \)
But a valid \(M \) must reject \(a^j b^i \) and accept \(a^i b^i \)
Deterministic Finite Automata
- Definition
- Testing if they accept a string
- Building automata

Regular Languages
- Definition
- Closed Under Union, Intersection, Negation
- Using Pigeonhole Principle to show language ain’t regular

Here’s What You Need to Know…