Some Great Theoretical Ideas in Computer Science for 15-251
Graphs II
Lecture 18 (March 19, 2009)
Recap
Theorem: Let G be a graph with n nodes and e edges

The following are equivalent:

1. G is a tree (connected, acyclic)
2. Every two nodes of G are joined by a unique path
3. G is connected and $n = e + 1$
4. G is acyclic and $n = e + 1$
5. G is acyclic and if any two non-adjacent points are joined by a line, the resulting graph has exactly one cycle
Cayley’s Formula

The number of labeled trees on \(n \) nodes is \(n^{n-2} \)
A graph is **planar** if it can be drawn in the plane without crossing edges.
Euler’s Formula

If G is a connected planar graph with n vertices, e edges and f faces, then \(n - e + f = 2 \)
A spanning tree of a graph G is a tree that touches every node of G and uses only edges from G.

Every connected graph has a spanning tree.
Finding Optimal Trees

Trees have many nice properties (uniqueness of paths, no cycles, etc.)

We may want to compute the “best” tree approximation to a graph

If all we care about is communication, then a tree may be enough. We want a tree with smallest communication link costs
Finding Optimal Trees

Problem: Find a minimum spanning tree, that is, a tree that has a node for every node in the graph, such that the sum of the edge weights is minimum.
Minimum Spanning Tree
Finding an MST: Kruskal’s Algorithm

Create a forest where each node is a separate tree

Make a sorted list of edges S

While S is non-empty:

 Remove an edge with minimal weight

 If it connects two different trees, add the edge. Otherwise discard it.
Applying the Algorithm
Analyzing the Algorithm

The algorithm outputs a spanning tree T.

Suppose that it’s not minimal. (For simplicity, assume all edge weights in graph are distinct)

Let M be a minimum spanning tree.

Let e be the first edge chosen by the algorithm that is not in M.

If we add e to M, it creates a cycle. Since this cycle isn’t fully contained in T, it has an edge f not in T.

$N = M + e - f$ is another spanning tree.
Analyzing the Algorithm

$N = M + e - f$ is another spanning tree.

Claim: $e < f$, and therefore $N < M$

Suppose not: $e > f$

Then f would have been visited before e by the algorithm, but not added, because adding it would have formed a cycle.

But all of these cycle edges are also edges of M, since e was the first edge not in M. This contradicts the assumption M is a tree.
Greed is Good (In this case…)

The greedy algorithm, by adding the least costly edges in each stage, succeeds in finding an MST

But — in math and life — if pushed too far, the greedy approach can lead to bad results.
TSP: Traveling Salesman Problem

Given a number of cities and the costs of traveling from any city to any other city, what is the cheapest round-trip route that visits each city exactly once and then returns to the starting city?
TSP from Trees

We can use an MST to derive a TSP tour that is no more expensive than twice the optimal tour.

Idea: walk “around” the MST and take shortcuts if a node has already been visited.

We assume that all pairs of nodes are connected, and edge weights satisfy the triangle inequality $d(x,y) \leq d(x,z) + d(z,y)$.
Tours from Trees

Shortcuts only decrease the cost, so
\[\text{Cost(Greedy Tour)} \leq 2 \text{ Cost(MST)} \leq 2 \text{ Cost(Optimal Tour)} \]

This is a 2-competitive algorithm
Bipartite Graph

A graph is bipartite if the nodes can be partitioned into two sets V_1 and V_2 such that all edges go only between V_1 and V_2 (no edges go from V_1 to V_1 or from V_2 to V_2)
Dancing Partners

A group of 100 boys and girls attend a dance. Every boy knows 5 girls, and every girl knows 5 boys. Can they be matched into dance partners so that each pair knows each other?
Dancing Partners
Perfect Matchings

Theorem: If every node in a bipartite graph has the same degree \(d \geq 1 \), then the graph has a perfect matching.

Note: if degrees are the same then \(|A| = |B| \), where \(A \) is the set of nodes “on the left” and \(B \) is the set of nodes “on the right”
A Matter of Degree

Claim: If degrees are the same then $|A| = |B|$

Proof:

If there are m boys, there are md edges

If there are n girls, there are nd edges
The Marriage Theorem

Theorem: A bipartite graph has a perfect matching if and only if $|A| = |B| = n$ and for all $k \in [1,n]$: for any subset of k nodes of A there are at least k nodes of B that are connected to at least one of them.

Call a graph with this property NoShrinkFrom(A)
NoShrinkFrom(A)?

For any subset of (say) \(k \) nodes of \(A \) there are at least \(k \) nodes of \(B \) that are connected to at least one of them.

The condition fails for this graph.
The Feeling is Mutual

At least \(k \)

\[
\begin{array}{c}
\{ \text{At least } k \} \\
A \leftrightarrow B
\end{array}
\]

At most \(n-k \)

\[
\begin{array}{c}
\{ \text{At most } n-k \} \\
A \leftrightarrow B
\end{array}
\]

If it’s NoShrinkFrom(A), it’s also NoShrinkFrom(B)
Proof of Marriage Theorem

Strategy: Break up the graph into two parts that are NoShrinkFrom(A) and recursively partition each of these into two NoShrinkFrom(A) parts, etc., until each part has only two nodes.
Proof of Marriage Theorem

Select two nodes $a \in A$ and $b \in B$ connected by an edge

Idea: Take $G_1 = (a,b)$ and $G_2 = \text{everything else}$

Problem: G_2 need not be NoShrinkFrom(A). There could be a set of k nodes that has only $k-1$ neighbors.
The only way this could fail is if one of the missing nodes is b

Add this in to form G_1, and take G_2 to be everything else.

This is a matchable partition!
Here’s What You Need to Know...

Minimum Spanning Tree
- Definition

Kruskal’s Algorithm
- Definition
- Proof of Correctness

Traveling Salesman Problem
- Definition
- Using MST to get an approximate solution

The Marriage Theorem