

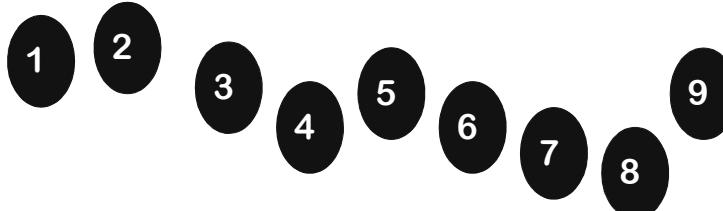
15-251

Great Theoretical Ideas in Computer Science

Ancient Wisdom: Unary and Binary

Lecture 5 (January 27, 2009)

How to play the 9 stone game?



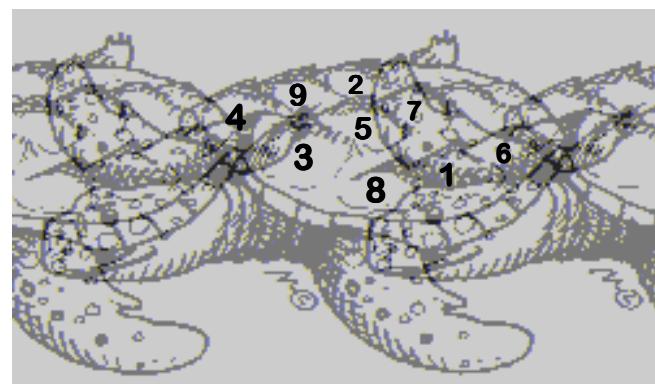
9 stones, numbered 1-9

Two players alternate moves.

Each move a player gets to take a new stone

Any subset of 3 stones adding to 15, wins.

Magic Square: Brought to humanity on the back of a tortoise from the river Lo in the days of Emperor Yu in ancient China



Magic Square: Any 3 in a vertical, horizontal, or diagonal line add up to 15.

4	9	2
3	5	7
8	1	6

Conversely,
any 3 that add to 15 must be on a line.

4	9	2
3	5	7
8	1	6

TIC-TAC-TOE on a Magic Square
Represents The Nine Stone Game

Alternate taking squares 1-9.
Get 3 in a row to win.

4	9	2
3	5	7
8	1	6

Basic Idea of this Lecture

Don't stick with the representation in which you encounter problems!

Always seek the more useful one!

This idea requires a lot of practice

Prehistoric Unary

1

2

3

4

Consider the problem of
finding a formula for the sum
of the first n numbers

You already used
induction to verify that
the answer is $\frac{1}{2}n(n+1)$

$$1 + 2 + 3 + \dots + n-1 + n = S$$

$$n + n-1 + n-2 + \dots + 2 + 1 = S$$

$$\hline n+1 + n+1 + n+1 + \dots + n+1 + n+1 = 2S$$

$$n(n+1) = 2S$$

$$S = \frac{n(n+1)}{2}$$

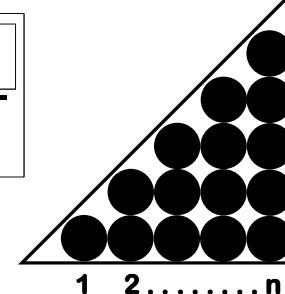
$$1 + 2 + 3 + \dots + n-1 + n = S$$

$$n + n-1 + n-2 + \dots + 2 + 1 = S$$

$$n(n+1) = 2S$$

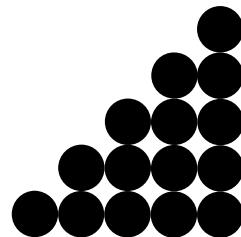
$$S = \frac{n(n+1)}{2}$$

$n \dots \dots 2 \ 1$



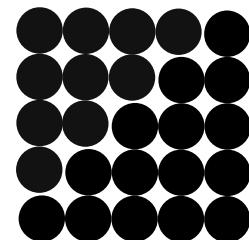
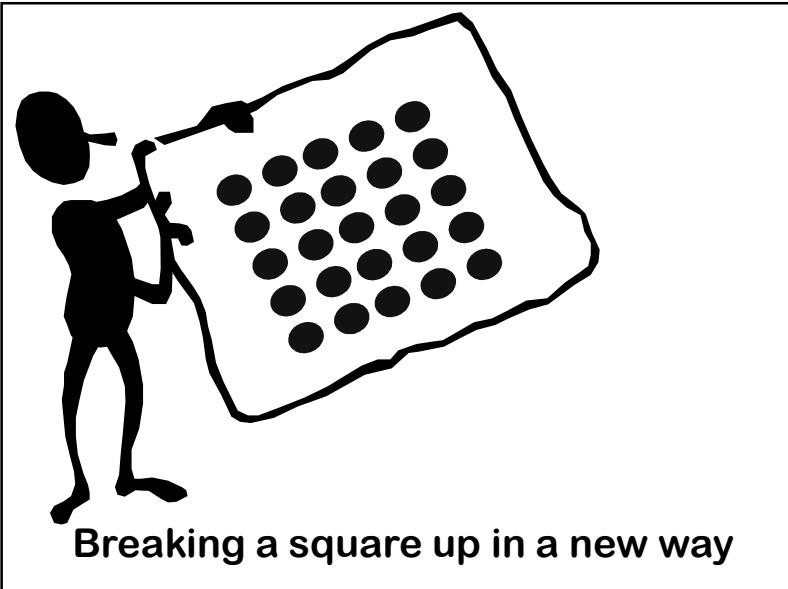
n^{th} Triangular Number

$$\begin{aligned}\Delta_n &= 1 + 2 + 3 + \dots + n-1 + n \\ &= n(n+1)/2\end{aligned}$$

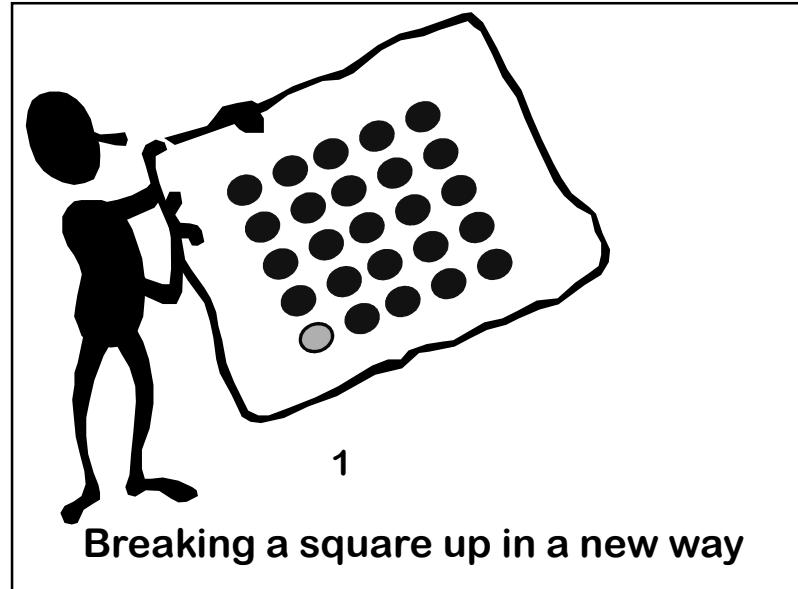


n^{th} Square Number

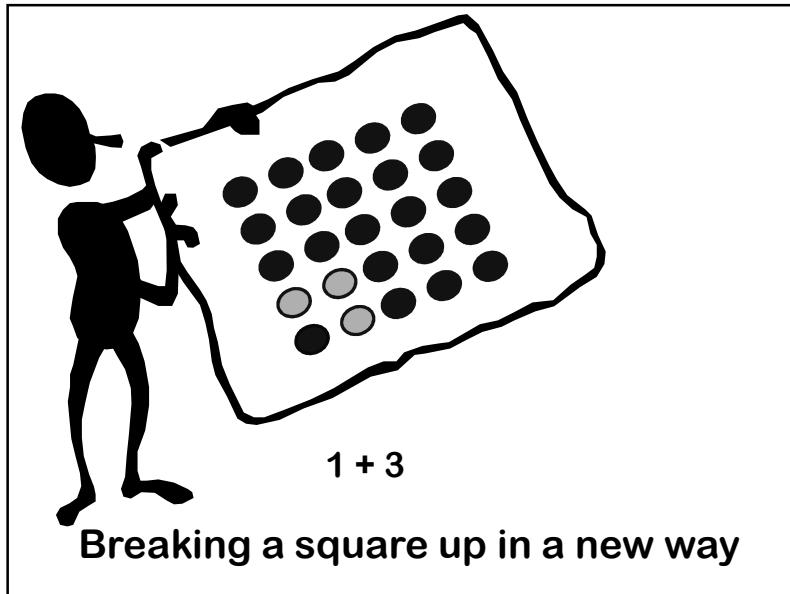
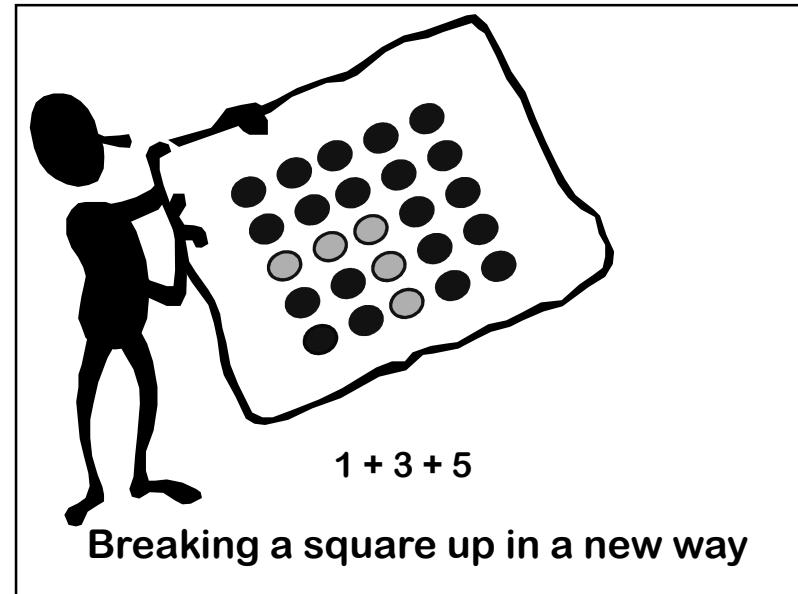
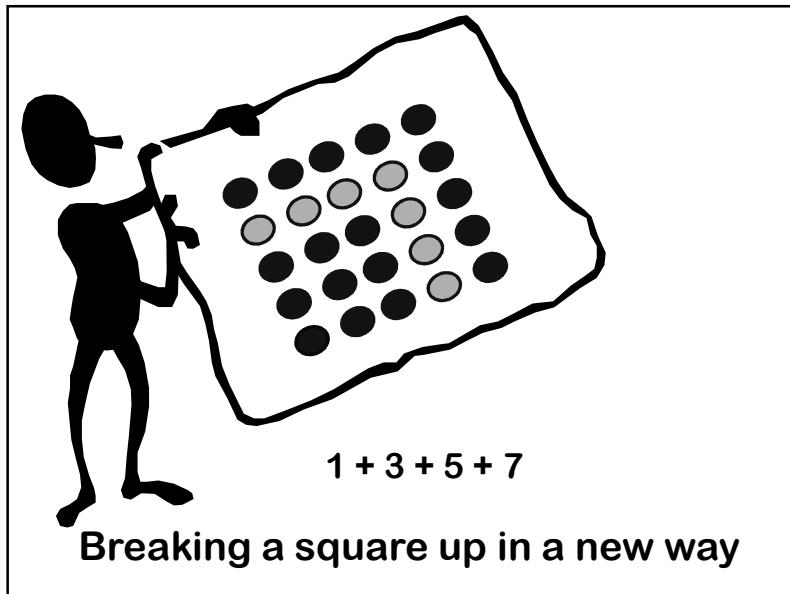
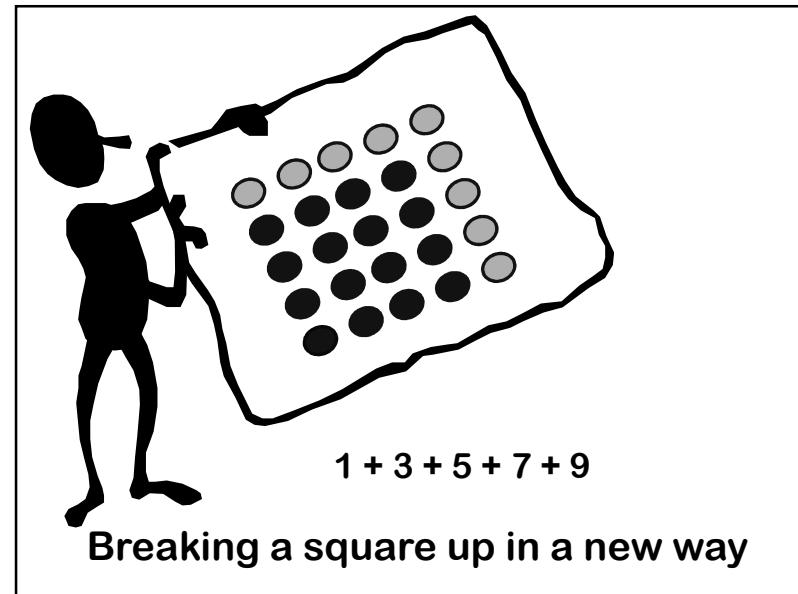
$$\begin{aligned}\square_n &= n^2 \\ &= \Delta_n + \Delta_{n-1}\end{aligned}$$

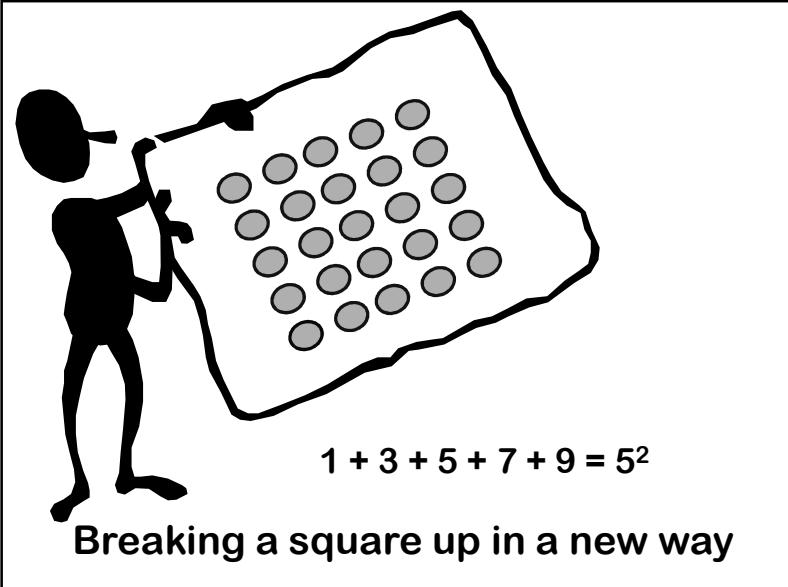
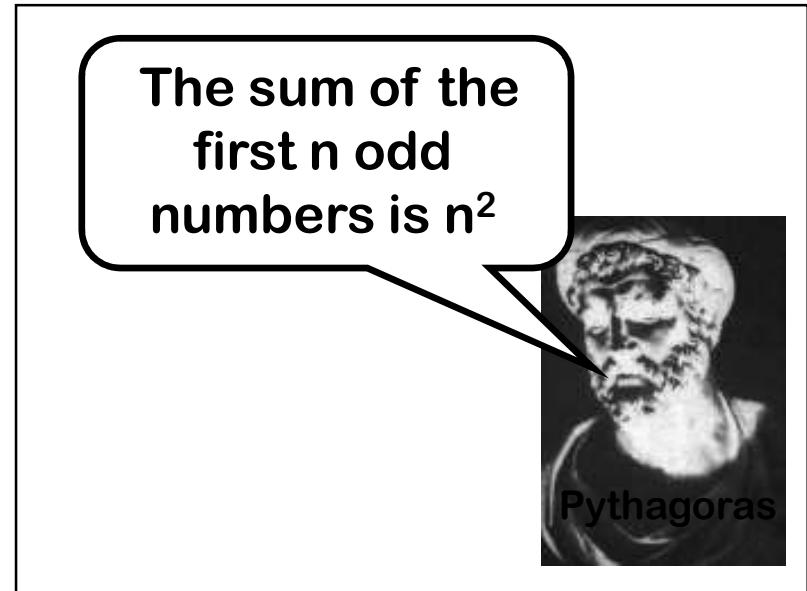


Breaking a square up in a new way



Breaking a square up in a new way





Here is an alternative dot proof of the same sum....

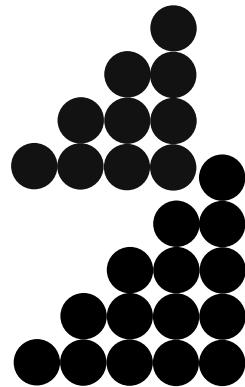
n^{th} Square Number

$$\square_n = \Delta_n + \Delta_{n-1}$$
$$= n^2$$

Diagram illustrating the sum of the first 5 odd numbers: $1 + 3 + 5 + 7 + 9 = 25$

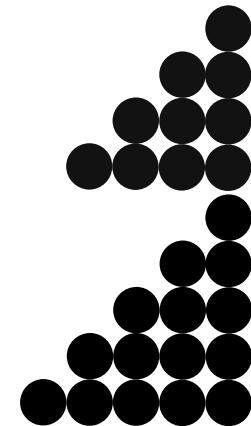
n^{th} Square Number

$$\square_n = \Delta_n + \Delta_{n-1}$$
$$= n^2$$



n^{th} Square Number

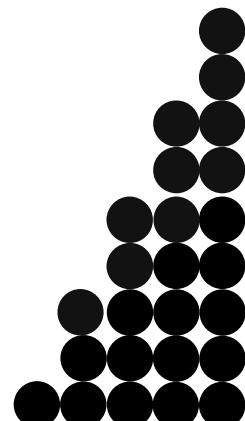
$$\square_n = \Delta_n + \Delta_{n-1}$$



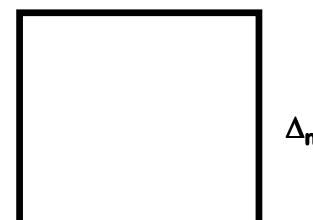
n^{th} Square Number

$$\square_n = \Delta_n + \Delta_{n-1}$$

= Sum of first n
odd numbers

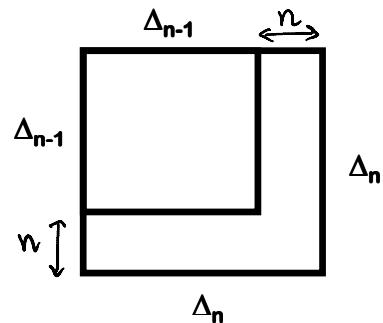


Area of square = $(\Delta_n)^2$

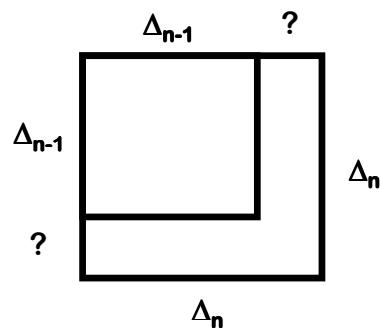


Δ_n

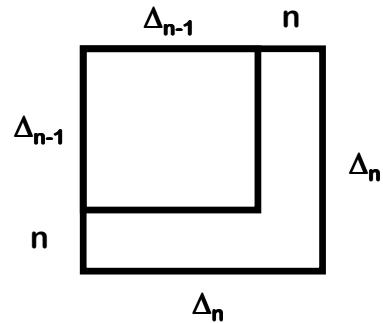
Area of square = $(\Delta_n)^2$



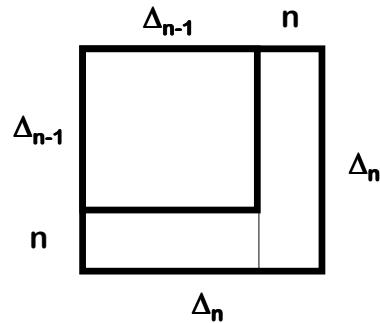
Area of square = $(\Delta_n)^2$



Area of square = $(\Delta_n)^2$

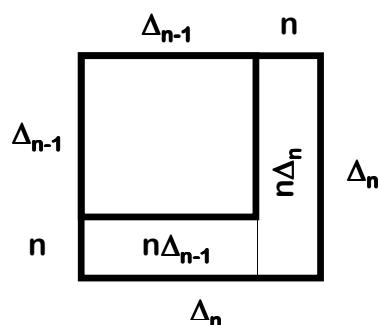


Area of square = $(\Delta_n)^2$



$$\text{Area of square} = (\Delta_n)^2$$

$$\begin{aligned}
 &= (\Delta_{n-1})^2 + n\Delta_{n-1} + n\Delta_n \\
 &= (\Delta_{n-1})^2 + n(\Delta_{n-1} + \Delta_n) \\
 &= (\Delta_{n-1})^2 + n(\square_n) \\
 &= (\Delta_{n-1})^2 + n^3
 \end{aligned}$$



$$(\Delta_n)^2 = n^3 + (\Delta_{n-1})^2$$

$$\begin{aligned}
 &= n^3 + (n-1)^3 + (\Delta_{n-2})^2 \\
 &= n^3 + (n-1)^3 + (n-2)^3 + (\Delta_{n-3})^2 \\
 &= n^3 + (n-1)^3 + (n-2)^3 + \dots + 1^3
 \end{aligned}$$

$$\begin{aligned}
 (\Delta_n)^2 &= 1^3 + 2^3 + 3^3 + \dots + n^3 \\
 &= [n(n+1)/2]^2
 \end{aligned}$$

Can you find a formula for the sum of the first n squares?

Babylonians needed this sum to compute the number of blocks in their pyramids

$$\frac{n(n+1)(2n+1)}{6}$$

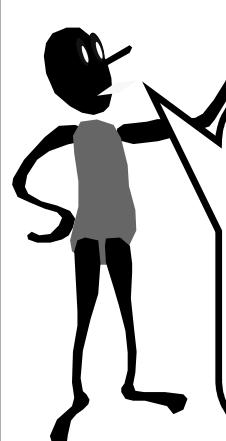
Rhind Papyrus

Scribe Ahmes was Martin Gardner of his day!

A man has 7 houses,
Each house contains 7 cats,
Each cat has killed 7 mice,
Each mouse had eaten 7 ears of spelt,
Each ear had 7 grains on it.
What is the total of all of these?

Sum of powers of 7

$$1 + x^1 + x^2 + x^3 + \dots + x^{n-2} + x^{n-1} = \frac{x^n - 1}{x - 1}$$



We'll use this
fundamental sum again
and again:

The Geometric Series

A Frequently Arising Calculation

$$\frac{(x-1)(1 + x^1 + x^2 + x^3 + \dots + x^{n-2} + x^{n-1})}{-1 - x - x^2 - x^3 - \dots - x^{n-1}} = -1 + x^n$$

A Frequently Arising Calculation

$$\begin{aligned} & (x-1)(1 + x^1 + x^2 + x^3 + \dots + x^{n-2} + x^{n-1}) \\ &= x^1 + x^2 + x^3 + \dots + x^{n-1} + x^n \\ & \quad - 1 - x^1 - x^2 - x^3 - \dots - x^{n-2} - x^{n-1} \\ &= x^n - 1 \end{aligned}$$

$$1 + x^1 + x^2 + x^3 + \dots + x^{n-2} + x^{n-1} = \frac{x^n - 1}{x - 1} \quad (\text{when } x \neq 1)$$

Geometric Series for $X=2$

$$1 + 2^1 + 2^2 + 2^3 + \dots + 2^{n-1} = 2^n - 1$$

$$1 + X^1 + X^2 + X^3 + \dots + X^{n-2} + X^{n-1} = \frac{X^n - 1}{X - 1} \quad (\text{when } X \neq 1)$$

Geometric Series for $X=\frac{1}{2}$

$$1 + \frac{1}{2} + \frac{1}{2}^2 + \frac{1}{2}^3 + \dots + \frac{1}{2}^{n-1} = \frac{\left(\frac{1}{2}\right)^n - 1}{\frac{1}{2} - 1} = 2\left(1 - \frac{1}{2}\right)^n$$

$$1 + X^1 + X^2 + X^3 + \dots + X^{n-2} + X^{n-1} = \frac{X^n - 1}{X - 1} \quad (\text{when } X \neq 1)$$

A Similar Sum

$$a^n + a^{n-1}b^1 + a^{n-2}b^2 + \dots + a^1b^{n-1} + b^n$$

$$a^n \left(1 + \frac{b}{a} + \left(\frac{b}{a}\right)^2 + \dots + \left(\frac{b}{a}\right)^n \right)$$

One from HW2 warmups

$$0.2^0 + 1.2^1 + 2.2^2 + 3.2^3 + \dots + n.2^n = ?$$

$$\begin{aligned} -S &= 0.2^0 + 1.2^1 + 2.2^2 + \dots + n.2^n \\ 2S &= 0.2^1 + 1.2^2 + \dots + (n-1).2^{n-1} + n.2^{n+1} \\ \hline S &= - \underbrace{(1.2^1 + 1.2^2 + \dots + 1.2^n)}_{- (2^{n+1} - 2)} + n.2^{n+1} \\ S &= - (2^{n+1} - 2) + n.2^{n+1} \\ &= \underline{(n-1)2^{n+1} + 2} \quad \square \quad \text{😊} \end{aligned}$$

Two Case Studies

Bases and Representation

BASE X Representation

$S = a_{n-1} a_{n-2} \dots a_1 a_0$ represents the number:

$$a_{n-1} X^{n-1} + a_{n-2} X^{n-2} + \dots + a_0 X^0$$

Base 2 [Binary Notation]

$$\begin{array}{r} \underline{1} \underline{0} \underline{1} \\ = \text{○○○○} \end{array}$$

101 represents: $1 (2)^2 + 0 (2^1) + 1 (2^0)$

$$\begin{array}{r} \text{Base 7} \\ \underline{0} \underline{1} \underline{5} \\ = \text{○○○○○○○○○○○○} \end{array}$$

015 represents: $0 (7)^2 + 1 (7^1) + 5 (7^0)$

Bases In Different Cultures

Sumerian-Babylonian: 10, 60, 360

Egyptians: 3, 7, 10, 60

Maya: 20

Africans: 5, 10

French: 10, 20

English: 10, 12, 20

BASE X Representation

$S = (a_{n-1} a_{n-2} \dots a_1 a_0)_X$ represents the number:

$$a_{n-1} X^{n-1} + a_{n-2} X^{n-2} + \dots + a_0 X^0$$

Largest number representable in base-X
with n “digits”

$$\begin{aligned} &= (X-1) X-1 X-1 X-1 X-1 \dots X-1)_X \\ &= (X-1)(X^{n-1} + X^{n-2} + \dots + X^0) \\ &= (X^n - 1) \end{aligned}$$

Fundamental Theorem For Binary

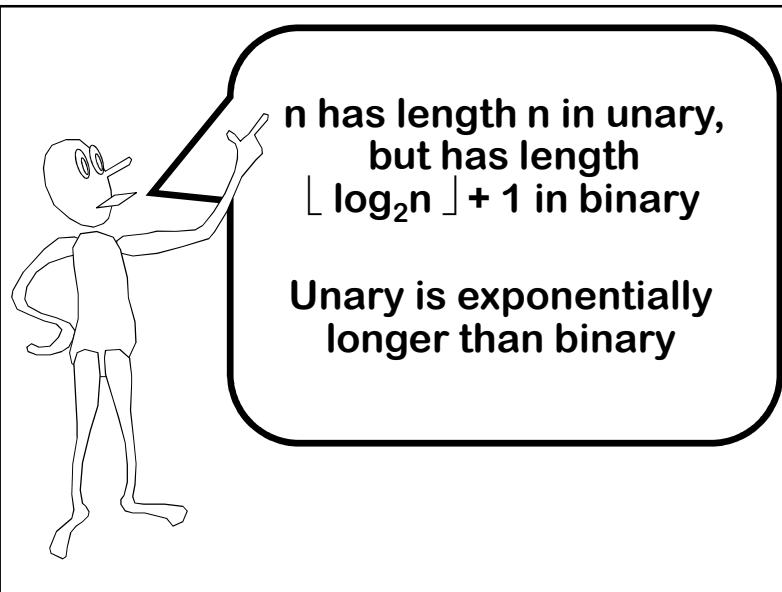
Each of the numbers from 0 to 2^n-1 is uniquely represented by an n -bit number in binary

k uses $\lfloor \log_2 k \rfloor + 1$ digits in base 2

Fundamental Theorem For Base-X

Each of the numbers from 0 to X^n-1 is uniquely represented by an n -“digit” number in base X

k uses $\lfloor \log_X k \rfloor + 1$ digits in base X



n has length n in unary,
but has length
 $\lfloor \log_2 n \rfloor + 1$ in binary

Unary is exponentially
longer than binary

Other Representations: Egyptian Base 3

Conventional Base 3:
Each digit can be 0, 1, or 2

Here is a strange new one:
Egyptian Base 3 uses -1, 0, 1

Example: $(\underline{1} \ \underline{-1} \ \underline{-1})_{EB3} = 9 - 3 - 1 = 5$

We can prove a unique representation theorem

How could this be Egyptian?
Historically, negative
numbers first appear in the
writings of the Hindu
mathematician
Brahmagupta (628 AD)

$$\frac{3^n - 1}{2}$$

$$2^n - 1$$

One weight for each power of 3
Left = “negative”. Right = “positive”

Two Case Studies

Bases and Representation

Solving Recurrences
using a good representation

Example

$$T(1) = 1$$

$$T(n) = 4T(n/2) + n$$

Notice that $T(n)$ is inductively defined only
for positive powers of 2, and undefined on
other values

$$T(1) = 1 \quad T(2) = 6 \quad T(4) = 28 \quad T(8) = 120$$

Give a closed-form formula for $T(n)$

Technique 1

$$T(1) = 1, T(n) = 4 T(n/2) + n$$

Base Case: $G(1) = 1$ and $T(1) = 1$

Induction Hypothesis: $T(x) = G(x)$ for $x < n$

Hence: $T(n/2) = G(n/2) = 2(n/2)^2 - n/2$

$$T(n) = 4 T(n/2) + n$$

$$= 4 G(n/2) + n$$

$$= 4 [2(n/2)^2 - n/2] + n$$

$$= 2n^2 - 2n + n$$

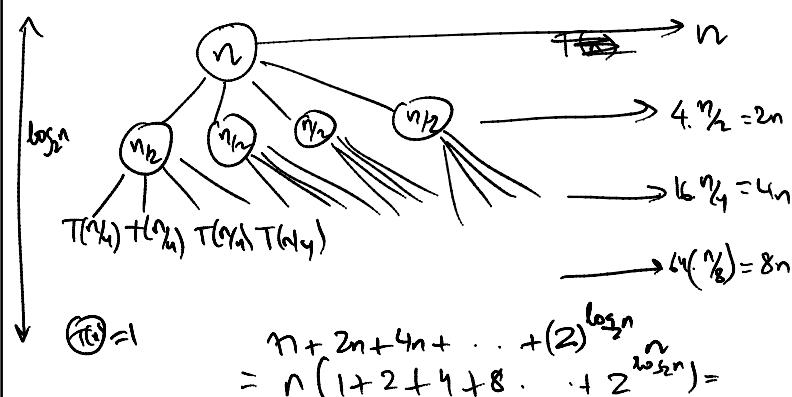
$$= 2n^2 - n = G(n)$$

Guess:
 $G(n) = 2n^2 - n$

Technique 3

The Recursion Tree Approach

$$T(1) = 1, T(n) = 4 T(n/2) + n$$



Technique 2

$$T(1) = 1, T(n) = 4 T(n/2) + n$$

Guess: $T(n) = an^2 + bn + c$
for some a, b, c

Calculate: $T(1) = 1$, so $a + b + c = 1$

$$T(n) = 4 T(n/2) + n$$

$$an^2 + bn + c = 4 [a(n/2)^2 + b(n/2) + c] + n$$

$$= an^2 + 2bn + 4c + n$$

$$(b+1)n + 3c = 0$$

Therefore: $b = -1$ $c = 0$ $a = 2$

A slight variation

$$T(1) = 1, T(n) = 4 T(n/2) + n^2$$

How about this one?

$$T(1) = 1, T(n) = 3 T(n/2) + n$$

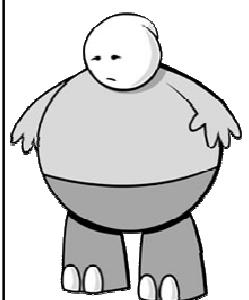
$$\begin{array}{ccc}
 T(n) = & n & \\
 & \diagup \quad \diagdown & \diagup \quad \diagdown \\
 & (n/2) & (n/2) & (n/2) \\
 & \diagup \quad \diagdown & \diagup \quad \diagdown & \diagup \quad \diagdown \\
 & (n/4) & (n/4) & (n/4) & (n/4) \\
 & \vdots & \vdots & \vdots & \vdots \\
 & n & \frac{3}{2}n & (\frac{3}{2})^2 n & (\frac{3}{2})^{\log_2 n}
 \end{array}$$

$$T(n) = n + \frac{3}{2}n + (\frac{3}{2})^2 n + \dots + (\frac{3}{2})^{\log_2 n} n$$

... and this one?

$$T(1) = 1, T(n) = T(n/4) + T(n/2) + n$$

Unary and Binary
Triangular Numbers
Dot proofs

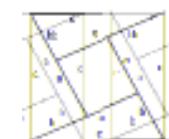


Here's What
You Need to
Know...

Base-X representations
k uses $\lfloor \log_2 k \rfloor + 1 = \lceil \log_2 (k+1) \rceil$
digits in base 2

Solving Simple Recurrences

Bhaskara's “proof” of Pythagoras’ theorem



“dot proof”