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15-251
Great Theoretical Ideas 

in Computer Science
for

Some
Complexity Theory: 

The P vs NP question
Lecture 28 (April 29, 2008)

$$$
The $1M Questions

The Clay Mathematics Institute
Millenium Prize Problems

1. Birch and Swinnerton-Dyer Conjecture 
2. Hodge Conjecture 
3. Navier-Stokes Equations 
4. P vs NP 
5. PoincarÉ Conjecture 
6. Riemann Hypothesis 
7. Yang-Mills Theory 

← solved!
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The P versus NP problem

Is perhaps one of the biggest open problems

in computer science (and mathematics!) today.

(Even featured in the TV show NUMB3RS)

But what is the P-NP problem?

Sudoku

3 x 3 x 3

Sudoku

3 x 3 x 3

Sudoku

4 x 4 x 4
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Sudoku

4 x 4 x 4

Sudoku

n x n x n

..
.

Suppose it takes you S(n) to 
solve n x n x n

V(n) time to verify the solution

Fact: V(n) = O(n2 x n2)

Question: is there some 
constant c such that

S(n) ≤ nc  ?

n x n x n

..
.

P vs NP problem

=

Does there exist an 
algorithm for n x n x n 
Sudoku that runs in 
time p(n) for some 
polynomial p( ) ?  

The P versus NP problem 
(informally)

Is proving a theorem much more difficult 
than checking the proof  of  a theorem?
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Let’s start at the beginning…

Hamilton Cycle

Given a graph G = (V,E), a cycle that visits all 
the nodes exactly once

The Problem “HAM”

The Set “HAM”

Input: Graph G = (V,E)

Output: YES if  G has a Hamilton cycle

NO if  G has no Hamilton cycle

HAM = { graph G | G has a Hamilton cycle }

AND

AND

NOT

Circuit-Satisfiability

Input: A circuit C with one output

Output: YES if  C is satisfiable

NO if  C is not satisfiable
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The Set “SAT”

SAT = { all satisfiable circuits C }

Bipartite Matching

Input: A bipartite graph G = (U,V,E)

Output: YES if  G has a perfect matching

NO if  G does not

The Set “BI-MATCH”

BI-MATCH = { all bipartite graphs that have a 
perfect matching }

Sudoku

Input: n x n x n sudoku instance

Output: YES if  this sudoku has a solution

NO if  it does not

The Set “SUDOKU”

SUDOKU = { All solvable sudoku instances }
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Decision Versus Search Problems

Decision Problem

YES/NO answers

Does G have a 
Hamilton cycle?

Search Problem

Find a Hamilton cycle 
in G if  one exists, 

else return NO

Can G be 
3-colored ?

Find a 3-coloring of  
G if  one exists, else 

return NO

Reducing Search to Decision

Given an algorithm for decision Sudoku, 
devise an algorithm to find a solution

Idea:
Fill in one-by-one and 
use decision algorithm

Reducing Search to Decision

Given an algorithm for decision HAM, 
devise an algorithm to find a solution

Idea:
Find the edges of  the 
cycle one by one

Decision/Search Problems

We’ll study decision problems because 
they are almost the same (asymptotically) 

as their search counterparts
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Polynomial Time and 
The Class “P” of  

Decision Problems

What is an efficient algorithm?

polynomial time

O(nc) for some 
constant c

non-polynomial
time

Is an O(n) algorithm efficient?

How about O(n log n)?

O(n2) ?

O(n10) ?

O(nlog n) ?

O(2n) ?

O(n!) ?

We consider non-polynomial time 
algorithms to be inefficient.

And hence a necessary condition for an 
algorithm to be efficient is that it should 

run in poly-time.

Does an algorithm
running in O(n100) time 

count as efficient?
Asking for a poly-time algorithm for a 

problem sets a (very) low bar when asking 
for efficient algorithms.

The question is: can we achieve even this
for 3-coloring? 

SAT?
Sudoku?
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The Class P

We say a set L ⊆
ˬ

* is in P if  there is

a program A and

a polynomial p( )

such that for any x in 
ˬ

*, 

A(x) runs for at most p(|x|) time
and answers question “is x in L?” correctly.

The class of all sets L that can be 
recognized in polynomial time.

The class of all decision problems that 
can be decided in polynomial time.

The Class P

Why are we looking only at sets ⊆
ˬ

*?

What if  we want to work with graphs or 
boolean formulas?

Languages/Functions in P?

Example 1:
CONN = {graph G: G is a connected graph}

Algorithm A1:

If  G has n nodes, then run depth first search 
from any node, and count number of  distinct 
nodes you see. If  you see n nodes, G ∈ CONN, 
else not.

Time: p1(|x|) = ˡ (|x|).
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Languages/Functions in P?

HAM, SUDOKU, SAT are not known to be in P

CO-HAM = { G | G does NOT have a 
Hamilton cycle}

CO-HAM ∈ P if  and only if  HAM ∈ P 

Onto the new class, NP

Verifying Membership

Is there a short “proof” I can give you for:

G ∈ HAM?

G ∈ BI-MATCH?

C ∈ SAT?

G ∈ CO-HAM?

NP
A set L ⊆ NP

if  there exists an algorithm A and a 
polynomial p( )

For all x ∈ L

there exists y with 
|y| ≤ p(|x|)

such that A(x,y) = YES

in p(|x|) time

For all x′ ∉ L

For all y′ with 
|y′| ≤ p(|x′|)

in p(|x|) time

we have A(x′,y′) = NO
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can think of  A as “proving” that x is in L

Recall the Class P

We say a set L ⊆
ˬ

* is in P if  there is

a program A and

a polynomial p()

such that for any x in 
ˬ

*, 

A(x) runs for at most p(|x|) time
and answers question “is x in L?” correctly.

NP
A set L ∈ NP

if  there exists an algorithm A and a 
polynomial p( )

For all x ∈ L

there exists a y with 
|y| ≤ p(|x|)

such that A(x,y) = YES

in p(|x|) time

For all x′ ∉ L

For all y′ with 
|y′| ≤ p(|x′|)

in p(|x|) time

Such that A(x′,y′) = NO

The Class NP

The class  of sets L for which there exist 
“short” proofs of membership 

(of polynomial length) 

that can be “quickly” verified 
(in polynomial time).

Recall: A doesn’t have to find these proofs y; it just needs to be 
able to verify that y is a “correct” proof.

P ⊆ NP

For any L in P, we can just take y to be the 
empty string and satisfy the requirements.

Hence, every language in P is also in NP.
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Languages/Functions in NP?

G ∈ HAM?

G ∈ BI-MATCH?

G ∈ SAT?

G ∈ CO-HAM?

Summary: P versus NP

Set L is in P if  membership in L can be 
decided in poly-time.

Set L is in NP if  each x in L has a short “proof  
of  membership” that can be verified in poly-
time.

Fact: P ⊆ NP

Question: Does NP ⊆ P ?

Why Care?
Classroom Scheduling

Packing objects into bins

Scheduling jobs on machines

Finding cheap tours visiting a subset of cities

Allocating variables to registers

Finding good packet routings in networks

Decryption

…

NP Contains Lots of  Problems
We Don’t Know to be in P
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OK, OK, I care...

But where do I begin
if  I want to reason about

the P=NP problem?

How can we prove that
NP ⊆ P?

I would have to show that
every set in NP has a

polynomial time algorithm…

How do I do that?
It may take a long time!

Also, what if  I forgot one of  
the sets in NP?

We can describe 
just one problem L in NP, 

such that 
if  this problem L is in P, 

then NP ⊆ P.

It is a problem that can
capture all other problems

in NP.

The “Hardest” Set in NP
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Sudoku

n x n x n

..
.

Sudoku has a 
polynomial time 

algorithm 

if  and only if  

P = NP

The “Hardest” Sets in NP

Sudoku

SAT

3-Colorability

Clique

HAM

Independent-Set

These problems are all 
“polynomial-time equivalent”.

I.e., each of these can be reduced to any
of the others in poly-time

How do you prove these 
are the hardest?

Theorem [Cook/Levin]:

SAT is one language in NP, such that if  we 
can show SAT is in P, then we have shown 
NP ⊆ P.

SAT is a language in NP that can capture all 
other languages in NP.

We say SAT is NP-complete.
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AND

AND

NOT

3-colorability Circuit Satisfiability

Last lecture…

SAT and 3COLOR: Two problems that seem 
quite different, but are substantially the 
same.

Also substantially the same as CLIQUE and 
INDEPENDENT SET.

If you get a polynomial-time algorithm for one,
you get a polynomial-time algorithm for ALL.

Last lecture…

Any language in NP

SAT

can be reduced 
(in polytime to)
an instance of  

hence SAT is NP-complete

3COLOR

can be reduced 
(in polytime to)
an instance of

hence 3COLOR is NP-complete Here’s What 
You Need to 

Know…

Definition of P and NP

Definition of problems

SAT, 3-COLOR, HAM, 
SUDOKU, BI-MATCH

SAT, 3-COLOR, HAM, SUDOKU
all essentially equivalent.

Solve any one in poly-time
⇒ solve all of them in poly-time


