A Graph Named “Gadget”

K-Coloring

We define a k-coloring of a graph:

- Each node gets colored with one color
- At most k different colors are used
- If two nodes have an edge between them they must have different colors

A graph is called k-colorable if and only if it has a k-coloring
A 2-CRAYOLA Question!

Is Gadget 2-colorable?
No, it contains a triangle

A 2-CRAYOLA Question!

Given a graph G, how can we decide if it is 2-colorable?
Answer: Enumerate all 2^n possible colorings to look for a valid 2-coloring.
How can we efficiently decide if G is 2-colorable?

Theorem: G contains an odd cycle if and only if G is not 2-colorable.

Alternate coloring algorithm:
To 2-color a connected graph G, pick an arbitrary node v, and color it white.
Color all v's neighbors black.
Color all their uncolored neighbors white, and so on.
If the algorithm terminates without a color conflict, output the 2-coloring.
Else, output an odd cycle.

A 2-CRAYOLA Question!

Theorem: G contains an odd cycle if and only if G is not 2-colorable.
A 3-CRAYOLA Question!

Is Gadget 3-colorable?
Yes!

A 3-CRAYOLA Question!

3-Coloring Is Decidable by Brute Force
Try out all 3^n colorings until you determine if G has a 3-coloring

A 3-CRAYOLA Oracle

3-Colorability Oracle
Better 3-CRAYOLA Oracle

NO, or
YES here is how: gives 3-coloring of the nodes

3-Colorability Search Oracle

3-Colorability Decision Oracle

GIVEN:
3-Colorability Decision Oracle

BUT I WANTED a SEARCH oracle for Christmas
I am really bummered out

Christmas Present

GIVEN:
3-Colorability Decision Oracle

How do I turn a mere decision oracle into a search oracle?

GIVEN:
3-Colorability Decision Oracle
What if I gave the oracle partial colorings of G? For each partial coloring of G, I could pick an uncolored node and try different colors on it until the oracle says “YES”.

Beanie’s Flawed Idea

Rats, the oracle does not take partial colorings....

Beanie’s Fix

Let’s now look at two other problems:
1. K-Clique
2. K-Independent Set
A K-clique is a set of K nodes with all \(K(K-1)/2 \) possible edges between them.

This graph contains a 4-clique.

Given: \((G, k)\)
Question: Does \(G\) contain a \(k\)-clique?

BRUTE FORCE: Try out all \(\binom{n}{k} \) possible locations for the \(k\) clique.

An independent set is a set of nodes with no edges between them.

This graph contains an independent set of size 3.
A Graph Named “Gadget”

Given: \((G, k)\)
Question: Does \(G\) contain an independent set of size \(k\)?

BRUTE FORCE: Try out all \(n\) choose \(k\) possible locations for the \(k\) independent set

Clique / Independent Set

Two problems that are cosmetically different, but substantially the same

Complement of \(G\)

Given a graph \(G\), let \(G^*\), the complement of \(G\), be the graph obtained by the rule that two nodes in \(G^*\) are connected if and only if the corresponding nodes of \(G\) are not connected
Let G be an n-node graph

G has a k-clique \iff G^* has an independent set of size k

Clique / Independent Set

Two problems that are cosmetically different, but substantially the same.
Thus, we can quickly reduce a clique problem to an independent set problem and vice versa. There is a fast method for one if and only if there is a fast method for the other.

Let's now look at two other problems:
1. Circuit Satisfiability
2. Graph 3-Colorability

Combinatorial Circuits
AND, OR, NOT, 0, 1 gates wired together with no feedback allowed

Circuit-Satisfiability
Given a circuit with n-inputs and one output, is there a way to assign 0-1 values to the input wires so that the output value is 1 (true)?

Yes, this circuit is satisfiable: 110
Circuit-Satisfiability

Given: A circuit with \(n \)-inputs and one output, is there a way to assign 0-1 values to the input wires so that the output value is 1 (true)?

BRUTE FORCE: Try out all \(2^n \) assignments

3-Colorability
NOT gate!
How do we force the graph to be 3 colorable exactly when the circuit is satifiable?

Let C be an n-input circuit

Graph composed of gadgets that mimic the gates in C

BUILD: SAT Oracle

GIVEN: 3-color Oracle

You can quickly transform a method to decide 3-coloring into a method to decide circuit satifiability!
Given an oracle for circuit SAT you can also quickly solve 3-colorability!

Circuit-SAT / 3-Colorability

Two problems that are cosmetically different, but substantially the same

Four problems that are cosmetically different, but substantially the same

FACT: No one knows a way to solve any of the 4 problems that is fast on all instances
Summary

Many problems that appear different on the surface can be efficiently reduced to each other, revealing a deeper similarity.