some 10-2951

Great-Theoretical Ideas

4+ Computer Science
for

Thales’ and Godel’s Legacy:
Proofs and Their Limitations

Lecture 26 (April 22, 2008)

Axioms

In traditional logic, an axiom or postulate is a
proposition that is not proved or demonstrated
but considered to be self-evident. Therefore, its
truth is taken for granted, and serves as a starting
point for deducing and inferring other truths.

Peano Arithmetic

The Peano axioms formally define the
properties of the natural numbers

1. For every natural numbern,n=n
2. For all natural numbers, if n=m, thenm=n.
3.Forall naturalsif k=mand m=nthen k=n.

4. If nis a natural number and n=m, then mis
also a natural number.

5.0 is a natural number.

6. For every natural number n,
S(n) is a natural number.

7. For every natural number n, S(n) # 0.

8. For all natural numbers m and n, if
S(m)=S8(n), thenm =n.

What is a proof?

Intuitively, a proof is a sequence of
“statements”, each of which
follows “logically” from some of
the previous steps.

What are “statements”? What does
it mean for one to follow “logically”
from another?

What are “statements”? What does
it mean for one to follow “logically”
from another?

Intuitively, statements must be stated
in some language.

Formally, statements are strings of
adecidable language S over >.

Thatis, S is a subset of Z* and there is a
Java program Pg(x) that outputs Yes if x
isin S, and outputs No otherwise.

This decidable set S is the set of “syntactically
valid” strings, or “statements” of a language.

Example:
Let S be the set of all syntactically well
formed statements in propositional logic.

XO-X
X¥Y) =Y
[X-Y (not)

Typically, language syntax is defined inductively.

This makes it easy to write a recursive program to
recognize the strings in the language.

Syntax for Statements in
Propositional Logic

Variable - X, Y, X,, X5, X3, ...
Literal - Variable | -Variable

Statement -
Literal
- (Statement)
Statement [Statement
Statement [Statement

Recursive Program to decide S

ValidProp(S) {
return True if any of the following:

S has the form - (S,) and ValidProp(S,)

S has the form (S, 0S,) and
ValidProp(S,) AND ValidProp(S,)

S has the form

We can now precisely define a
syntactically valid set of “statements
in a language.

»

But what is “logic”, and what is
“meaning”?

For the time being, let us ignore the
meaning of “meaning”, and pin down our
concepts in purely symbolic (syntactic)
terms.

Define a function Logicg

Given a decidable set of statements S, fix any
single computable “logic function”:
Logicg: (SO A) xS - Yes/No

If Logic(x,y) = Yes, we say that the
statementy is implied by statement x.

We also have a “start statement” Anotin S,
where
Logicg(A,x) = Yes will mean that our logic
views the statement x as an axiom.

A valid proofin logic Logicg

A sequencesy, s,, ..., S, of statementsiis a
valid proof of statement Q in Logicg iff
* Logicg(A, s4) =True

(i.e., s, is an axiom of our language)

*For all 1 <i <n-1, Logicg(s;,S;.1) = True
(i.e., each statement implies the next one)

*Andfinally, s, = Q
(i.e., the final statementis indeed Q.)

Provable Statements
(a.k.a. Theorems)

Let S be a set of statements.
Let L be a logic function.

Define Provableg =
All statements Qin S for which
there is a valid proof of Q in logic L.

Example SILLY,

S = All strings.
L = All pairs of the form: <A, s>, s(IS

Provables) is the set of all strings.

Example: SILLY,
S = All strings over {0,1}.
L=<A, 0>, <A, 1>, and

all pairs of the form: <s,s0> or <s, s1>

Provables) is the set of all strings.

Example: SILLY,

S = All strings.
L=<A, 0>, <A, 11>, and

all pairs of the form: <s,s0> or <st, s1t1>

Provables | is the set of all strings with an

even number of 1s

Example: Propositional Logic

S = All well-formed formulas in the notation of
Propositional Logic.

L = Two formulas are one step apart if one
can be made from the other from a finite list
of forms. (see next page for a partial list.)

Modus ponens
[lp—=aArpl—ld
Modus tollens
[(p—) A-g — [-2]
Conijt ion il ion (or Ce
[P A(@]—[prd
Disjunction introduction (or Addition)
] —lpvd
Simplification
pAd— [l
Disjunctive syllogism
[(pva)A-p]—Id
Hypothetical syllogism
p—aA@—=r)]—=[p—r7]
Constructive dilemma

[p=aAr—s)nvr)]—lgvs

Destructive dilemma

(=g Al — s)A(=gV=s)] —[-pV -r]

(The same as 2 applications of transpasition, then 1 application of constructive dilemma.)
Resolution
eV A (=pv)] —[gvr)

Example: Propositional Logic

S = All well-formed formulas in the notation of
Propositional Logic.

L =Two formulas are one step apart if one can
be made from the other from a finite list of
forms. (see previous page for a partial list.)

(hopefully) Provableg is the set of all
formulas that are tautologies in
propositional logic.

Super Important Fact

Let S be any (decidable) set of statements.
Let L be any (computable) logic.

We can write a program to enumerate the
provable theorems of L.

l.e., Provables,,_ is enumerable.

Enumerating the Set Provableg |

for k =0 to forever do

{
let PROOF loop through all strings of length k

{
let STMT loop through all strings of length < k

{
if proofchecks, (STMT, PROOF) = Valid
{
output STMT; Ilthis is a theorem
}
}
}

}

Example: Euclid and ELEMENTS

We could write a program ELEMENTS to
check (STATEMENT, PROOF) pairs to
determine if PROOF is a sequence, where
each step is either one logical inference, or
one application of the axioms of Euclidian
geometry.

THEOREMS , cyents is the set of all statements
provable from the axioms of Euclidean
geometry.

Example: Peano and PA.

We could write a program PA to check
(STATEMENT, PROOF) pairs to determine if
PROOF is a sequence, where each step is
either one logical inference, or one
application of the axioms of Peano
Arithmetic

THEOREMS,, is the set of all statements
provable from the axioms of Peano
Arithmetic

OK, so | see what valid
syntaxis, what logic is, what
a proof and what
theoremsare...

But where does “truth” and
“meaning” comein it?

Let S be any decidable
language. Let Truthg be any
fixed function from S to
TruelFalse.

We say Truthg is a “truth
concept” associated with the
stringsin S.

Truths of Natural Arithmetic

Arithmetic_Truth=

All TRUE expressions of the
language of arithmetic (logical
symbols and quantification over
Naturals).

Truths of Euclidean Geometry

Euclid_Truth=

All TRUE expressions of the
language of Euclidean
geometry.

Truths of JAVA Program Behavior

JAVA Truth=

All TRUE expressions of the form
program “P on input X will halt” or
“not halt”

General Picture

A decidable set of statements S.

A computable logic L.

A (possibly uncomputable)
truth concept
Truthg: S - {T, F}

We work in logics that we think are related
to our truth concepts.

Alogic L is “sound” for a truth concept
Truthg if
xin Provableg, = Truthg(x)=T

L is sound for Truthg if
*L(A, A) = true = Truthg(A)= True

+ L(B,C)=True and Truthg(B)=True
= Truthg(C)= True

L is sound for Truthg means that L can’t prove
anything false for the truth concept Truthg.

Provable_g = Truthg

SILLY;is sound for the truth concept
of an even number of ones.

Example SILLY;

S = All strings.
L=<A,0>,<A,11>,and
all pairs of the form: <s,s0> or <st, s1t1>

Provableg) is the set of all strings
with zero parity.

Euclidean Geometry is

sound for the truth concept of
facts about points and lines in the
Euclidean plane.

Peano Arithmetic is sound for the
truth concept of (first order)
number facts about Natural
numbers.

A logic may be sound but it still
might not be “complete”

A logic L is complete for a truth
concept Truthg if it can prove every
statement that is True in Truthg

Soundness:
Provableg, = Truthg

Completeness:
Truthg= Provableg,

SILLY;is sound and complete for the truth
concept of an even number of ones.

Example SILLY;

S = All strings.
L=<A,0>,<A, 11>, and
all pairs of the form: <s,s0> or <st, s1t1>

Provableg) is the set of all strings
with zero parity.

Truth versus Provability

Happy News:
Provableg,cpents = Euclid_Truth

The Elements of Euclid are
sound and complete
for (Euclidean) geometry.

Truth versus Provability

Sucky Fact:
Provablep,,,oaritn IS @ proper subset
of Arithmetic_Truth

Peano Arithmeticis sound.
Itis not complete.

Truth versus Provability

Foundational Crisis:

Itis impossible to have a proof system
F such that

Provableg g = Arithmetic_Truth

F is sound for
arithmetic will imply
F is not complete.

10

Here’s what we have

Alanguage S.
A truth concept Truthg.

A logic L that is sound (maybe even
complete) for the truth concept.

An enumerable list Provableg | of provable
statements (theorems) in the logic.

JAVA Truth is Not Enumerable

Suppose JAVA_Truth is enumerable, and the
program JAVA_LIST enumerates JAVA_Truth.

Can now make a program HALT(P):

Run JAVA_LIST until either of the two
statements appears: “P(P) halts”, or “P(P)
does not halt”.

Output the appropriate answer.

Contradiction of undecidability of K.

JAVA_Truth has No Proof System

There is no sound and complete proof
system for JAVA_Truth.

Suppose there is. Then there must be a
program to enumerate Provableg , .

Provables , is recursively enumerable.

JAVA_Truth is not recursively enumerable.

So Provableg, # JAVA_Truth

The Halting problem is not decidable.

Hence, JAVA_Truth is not recursively
enumerable.

Hence, JAVA_Truth has no sound and
complete proof system.

11

Similarly, in the last lecture,

we saw that the existence of integer
roots for Diophantine equations was
not decidable.

Hence, Arithmetic_Truthis not
recursively enumerable.

Hence, Arithmetic_Truth has no sound
and complete proof system!!!!

Hilbert’s Second Question [1900]

Is there a foundation for mathematics that
would, in principle, allow us to decide the
truth of any mathematical proposition?
Such a foundation would have to give us a
clear procedure (algorithm) for making the
decision.

Foundation F

Let F be any foundation for mathematics:

1. F is a proof system that only proves true
things [Soundness]

2. The set of valid proofs is computable.
[There is a program to check any candidate
proof in this system]

(Think of F as (S,L) in the preceding
discussion, with L being sound.)

Godel’s
Incompleteness Theorem

In 1931, Kurt Godel stunned the world by
proving that for any consistent axioms F
there is a true statement of first order
number theory that is not provable or
disprovable by F.

l.e., a true statement that can be made
using 0, 1, plus, times, for every, there
exists, AND, OR, NOT, parentheses, and
variables that refer to natural numbers.

12

Incompleteness

Let us fix F to be any attempt to give a
foundation for mathematics. We have
already proved that it cannot be
sound and complete. Furthermore...

We can even construct a statement
that we will all believe to be true,
butis not provable in F.

CONFUSEL(P)

Loop though all sequences of sentencesin S

If S is a valid F-proof of “P halts”,
then loop-forever

If S is a valid F-proof of “P never
halts”, then halt.

Program CONFUSE(P)

Loop though all sequences of
sentences in S

If Sis avalid F-proof of “P halts”,
then loop-forever

If Sis a valid F-proof of “P never
halts”, then halt.

GODEL, =
AUTO_CANNIBAL_MAKER(CONFUSE;)

Thus, when we run GODEL. it will do the same
thing as:
CONFUSE(GODELy)

Program CONFUSE(P)
GODEL; =

AUTO_CANNIBAL_MAKER(CONFUSE,
Loop though all sequences of - - ()

sentencesinS -
Thus, when we run GODEL¢ it will do the

If S is a valid F-proof of “P halts”, same thing as CONFUSEx(GODEL)
then loop-forever

If S is a valid F-proof of “P never
halts”, then halt.

Can F prove GODEL; halts?

If Yes, then CONFUSE(GODEL;) does not
halt: Contradiction

Can F prove GODEL; does not halt?

If Yes , then CONFUSE(GODEL,) halts:
Contradiction

13

GODEL,

F can’t prove or disprove that GODEL halts.

But GODEL; = CONFUSE(GODEL;) is the
program:

Loop though all sequences of sentencesin S

If S is a valid F-proof of “GODEL halts”, then
loop-forever

If S is a valid F-proof of “GODEL; never
halts”, then halt.

And this program does not halt!

No fixed set of assumptions F can
provide a complete foundation for
mathematical proof.

In particular, it can’t prove the true

statementthat GODEL; does not halit.

So What is Mathematics?

We can still have rigorous, precise axioms
that we agree to use in our reasoning (like
the Peano Axioms, or axioms for Set
Theory). We just can’t hope for them to be
complete.

Most working mathematicians never hit
these points of uncertainty in their work,
but it does happen!

14

15

