some 10-2951

Great-Theoretical Ideas

4+ Computer Science
for

What does this do?

e =17 (L, #,

N %)? (., +1,0):_ % ==
/

_&&'__ ?(printf("%d\t",__ /), (_,_
_+1,0) % >18& % < | 7 (
_+

W W% %)) < *
2 (., +1,__):0;}main(){_(100,0,0);}

Turing’s Legacy:
The Limits Of Computation
Lecture 25 (April 15, 2008)

“r,

9
. 5
(

Anything | say
say is false!

This lecture will change the way you
think about computer programs...

Many questions which appear easy at first
glance are impossible to solve in general

The HELLO assignment

Write a JAVA program to output the word
“HELLO” on the screen and halt.

Space and time are not an issue.
The program is for an ideal computer.

PASS for any working HELLO program, no
partial credit.

Grading Script
The grading script G must be able to take any
Java program P and grade it.

Pass, if P prints only the word
G(P)= HELLO” and halts.

Fail, otherwise.

How exactly might such a script work?

What does this do?

s N <=1 (., H,
M %)2 (., +1,0):_ % ==
/

_&&'__ ?(printf("%d\t",__ /), (_,_
_+1,0) % >18& % < | 7 (
_A+

H(| % %)< *
_,__*1,):0;}main(){_(100,0,0);}

?_(

What kind of program
could a student who
hated his/her TA

handin?

Nasty Program

n:=0;

while (n is not a counter-example
to the Riemann Hypothesis) {
n++;

}

print “Hello”;

The nasty program is a PASS if and only if the
Riemann Hypothesis is false.

A TA nightmare: Despite\
the simplicity of the
HELLO assignment,

there is no program to
correctly grade it!

And we will prove this./

The theory of what can\
and can’t be computed
by an ideal computer is
called
Computability Theory

or Recursion Theory.)

From the last lecture:

Are all reals describable? NO
Are all reals computable? NO

We saw that

computable = describable
but do we also have

describable = computable?

The “grading function” we just described
is not computable! (We’ll see a proof soon.)

Computable Function

Fix a finite set of symbols, >
Fix a precise programming language, e.g., Java

A program is any finite string of
characters that is syntactically valid.

A function f: Z* - X" is computable if there is a
program P that when executed on an ideal
computer, computes f.

That s, for all strings x in Z*, f(x) = P(x).

\ Hence: countably many computable functions!

There are only \
countably many Java
programs.

Hence, there are only
countably many
computable
functions.

Uncountably Many Functions

The functions f: & - {0,1}arein
1-1 onto correspondence with the
subsets of =" (the powerset of &*).

SubsetSof &* < Functionfg

xin$S = fs(x)=1
xnotin S = fs(x)=0

Hence, the setof all f:* _ {0,1} has
the same size as the power setof >,
which is uncountable.

/ Countably many \

computable functions.

Uncountably many
functions from " to {0,1}.

P

Thus, most functions
from " to {0,1} are not

computable. /

/ \ Notation And Conventions

Can we explicitly

. Fix a single programming language (Java)
describe an uncomputable

function? When we write program P we are talking
% about the text of the source code for P
. Can \.Ne describe an P(x) means the output that arises from
interesting uncomputable running program P on input x, assuming
function? that P eventually halts.
/ P(x) = O means P did not halt on x

The Halting Set K
The meaning of P(P)

Definition:
It follows from our conventions that P(P) Kis the set of all programs P such

means the output obtained when we run that P(P) halts.

P on the text of its own source code
K={JavaP | P(P) halts }

The Halting Problem

Is there a program HALT such that:

HALT(P) = yes,if P(P) halts
HALT(P) = no, if P(P)does not halt

THEOREM: There is no program to
solve the halting problem
(Alan Turing 1937)

Suppose a program HALT existed that
solved the halting problem.

HALT(P) = yes,if P(P) halts
HALT(P) no, if P(P) does not halt

We will call HALT as a subroutine in a new
program called CONFUSE.

CONFUSE
CONFUSE(P)
{ if (HALT(P))
then loop forever; Ili.e., we dont halt
else exit; Ili.e., we halt
Il text of HALT goes here

}

| Does CONFUSE(CONFUSE) halt? |

CONFUSE
CONFUSE(P)
{ if (HALT(P))
then loop forever; lli.e., we dont halt
else exit; Ili.e., we halt
1 text of HALT goes here }

Suppose CONFUSE(CONFUSE) halts:
then HALT(CONFUSE)=TRUE
= CONFUSE will loop forever on input CONFUSE

Suppose CONFUSE(CONFUSE) does not halt

then HALT(CONFUSE)= FALSE
CONTRADICTION _ ‘

Alan Turing (1912-1954)

Theorem: [1937]

There is no program to
solve the halting
problem

4 Turing’s argument is
essentially the
reincarnation of Cantor’s
Diagonalization
argument that we saw

\in the previous lecture.

All Programs (the input)

PO P1 P2 see Pj
) Po
<)
4
[+
| P

Programs (computable functions) are countable,

so we can put them in a (countably long) list

All Programs (the input)

PO P1 P2 see PJ
» Po
[@)]
4
a
< | P 4

YES, if P,(P) halts
No, otherwise

All Programs (the input)

PO P1 P2 cee PJ

o Po | do

g | P d,

>

o

o

< P d;
Letd;=
HALT(P;)

CONFUSE(P;) halts iff d;=no
(The CONFUSE function is the negation of the diagonal.)

Hence CONFUSE cannot be on this list.

Is there a real
number that can be

@ described, but not
computed?

[Consider the real
number R whose
binary expansion

hasa1inthe

jth position iff the jt

program halts.

Proof that R cannot be computed

Supposeiitis, and program FRED computes it.
then consider the following program:

MYSTERY(programtextP)
for j=0to foreverdo {
if (P==P)
then use FRED to compute jt" bit of R
return YES if (bit == 1), NO if (bit == 0)
}

MYSTERY solves the halting problem!

Computability Theory:
Vocabulary Lesson

We call a set SO5" decidable or recursive if
there is a program P such that:

P(x) = yes, if x(IS
P(x) = no, if xOIS

We already know: the halting setK is
undecidable

Decidable and Computable

SubsetSof &* < Functionfg

xin$S = fs(x)=1
xnotin S = fs(x)=0

Set S is decidable ~ function fg is computable

Sets are “decidable” (or undecidable), whereas
functions are “computable” (or not)

Oracles and Reductions

Oracle For Set S

% Is x(0S?

YES/NO Oracle
forS

A

Example Oracle
S = Odd Naturals

) a2

No

\ 4

N

81?

A 4

A

Yes

Ko=the set of programs that take
no input and halt

Hey, | ordered an\
oracle for the
famous halting

setK, but when |

opened the
package it was an GIVEN:
oracle for the Oracl
different set K.) f(:?;:

But you can use this oracle for K,
to build an oracle for K.

Ko=the set of programs that take
no input and halt
P =[inputl; Q]
Does P(P) halt?

A\

Does [I:=P;Q] halt?

Ll

A

me’ve reduced the problem

of deciding membership in
K to the problem of

deciding membership in K.

Hence, deciding
membership for K, must be
at least as hard as deciding
\ membership for K.

10

[Thus if K, were
decidable
then K would be as well.

We already know K is not
decidable, hence K, is
\ not decidable.

HELLO = the set of programs that
print hello and halt

Does P halt?
g Let P’ be P with all print
k statements removed.
(assumethere are
no side effects)

Is [P’; print HELLO]
a hello program?

5
r

BUILD:

<€
Oracle
for K,

Hence, the set HELLO is
not decidable.

EQUAL = All <P,Q> such that P and Q have
identical output behavior on all inputs

IsPinset HELLO?
b Let HI = [print HELLO]

Are P and Hl equal?

<€ GIVEN:

EQUAL
Oracle

11

Halting with input, Halting
without input, HELLO, and
EQUAL are all undecidable.

Diophantine Equations

Does polynomial 4X2Y + XY2+ 1 = 0 have an integer
root? l.e., does it have a zero at a point where all
variables are integers?

D = {multivariate integer polynomials P | P has
aroot where all variables are integers}

Famous Theorem: D is undecidable!
[Thisis the solution to Hilbert’s 10th A

problem] g
ol

Hilbert

Resolution of Hilbert’s 10t Problem:
Dramatis Personae

A

Martin Davis, Julia Robinson, Yuri Matiyasevich (1982)

Polynomials can Encode
Programs

Thereis a computable function

F: Java programs that take no input -
Polynomials over the integers

Such that
program P halts = F(P) has an integer root

12

D = the set of all integer
polynomials with integer roots

Does program P
halt?

N

F(P) has
integerroot?

5
Ll

BUILD:

HALTING
Oracle

A

PHILOSOPHICAL
INTERLUDE

CHURCH-TURING THESIS

Any well-defined procedure that can
be grasped and performed by the
human mind and pencil/paper, can be
performed on a conventional digital
computer with no bound on memory.

The Church-Turing Thesisis NOT a
theorem. It is a statement of belief
concerningthe universe we live in.

Your opinion will be influenced by your
religious, scientific, and philosophical
beliefs...

...mileage may vary

13

Empirical Intuition

No one has ever given a counter-
example to the Church-Turing thesis.
l.e., no one has given a concrete
example of something humans
computein a consistentand well
defined way, but that can’tbe
programmedon a computer. The
thesis is true.

Mechanical Intuition

The brain is a machine. The
components of the machine obey fixed
physicallaws. In principle, an entire
brain can be simulated step by step on
a digital computer. Thus, any thoughts
of such a brain can be computed by a
simulating computer. The thesis is
true.

Quantum Intuition

The brain is a machine, but nota
classical one. It is inherently quantum
mechanicalin nature and does not
reduce to simple particles in motion.
Thus, there are inherent barriers to

being simulated on a digital computer.

The thesis is false. However, the
thesisis true if we allow quantum
computers.

14

