aa BN ..
e Grade School Revisited:
How To Multiply Two Numbers

Lecture 23 (April 8, 2008)

Great Theoretical Ideas

-+ Computer Science
1{e] 3

with Matt!

Gauss’ Complex Puzzle
Remember how to multiply two
complex numbers a + bi and ¢ + di?
(a+bi)(c+di) = [ac —bd] + [ad + bc] i
Input: a,b,c,d
Output: ac-bd, ad+bc

If multiplying two real numbers costs $1
and adding them costs a penny, what is
the cheapest way to obtain the output
from the input?

The above method costs $4.02

Can we do better?

Take out a piece of paper and try...

Hint:
Try doing a+b and c+d first

The Gauss optimization saves
one multiplication out of four.

It requires 25% less work.

Gauss’ $3.05 Method

Input: a,b,c,d
Output: ac-bd, ad+bc

X,=a+b

X,=c+d

X3 =X X, =ac+ad+bc+bd
X,=ac

X5 =bd

Xg=X4—Xs =ac-bd
X;=X3—-X4—Xs =bc+ad

Time complexity of
grade school addition

kkkkx%x
EIE R b I
kkkkkkk*k

T(n) = amount of time
grade school
addition uses to add

Khk kKKK KK KKK two n-bit numbers

We saw that T(n) was linear
T(n) = e(n)

Time complexity of
grade school multiplication

T(n) = The amount of
time grade school
multiplication uses to
add two n-bit numbers

We saw that T(n) was quadratic
T(n) = e(n?

Is there a sub-linear time
method for addition?

... what would this mean?

Grade School Addition: Linear time
Grade School Multiplication: Quadratic time

of bits in the numbers

No matter how dramatic the difference in the
constants, the quadratic curve will
eventually dominate the linear curve

Any addition algorithm takes Q(n) time

Claim: Any algorithm for addition must
read all of the input bits

Proof: Suppose there is a mystery
algorithm A that does not examine
each bit

Give A a pair of numbers. There must be
some unexamined bit position i in one of
the numbers

Any addition algorithm takes Q(n) time

R I I I T

* k k ok kK Kk k% A did not

read this bit Grade school addition can’t
kK Kk kK k k ok at position i be improved upon by more

If A is not correct on the inputs, we than a constant factor

found a bug

If A is correct, flip the bit at position i and
give A the new pair of numbers. A gives
the same answer as before, which is now
wrong.

Grade School Addition: ©(n) time.
Furthermore, it is optimal

Grade School Multiplication: e(n?) time Can we even break the quadratic time barrier?

Is there a clever algorithm to multiply two In other words, can we do something very
numbers in linear time? different than grade school multiplication?

Despite years of research, no one
knows! If you resolve this question,
please let Matt know immediately.

. ° H 9 . .
Why is he making us learn tr_us. Divide And Conquer
Good question!

WHERE’S THE BEEF? T S
>~
One thing that makes algorithm design

“Computer Science” is that solving a problem CONQUER them recursively
in the most obvious way from its definitions is GLUE the answers together so as to
often not the best way to get a solution. obtain the answer to the larger problem

An approach to faster algorithms:

DIVIDE a problem into smaller subproblems

is a simple of example of this.

Multiplication of 2 n-bit numbers Multiplication of 2 n-bit numbers

n bits

-— —mm-—p
X =
— > ——>
Y n/2 bits n/2 bits

nzbits .« ni2bits XxY=ac 2"+ (ad + bc) 22 + bd

MULT(X,Y):
- /2 = /2
X=a2v"2+p Y=c2"2+d If IX| = Y| = 1 then return XY

X xY=ac 2"+ (ad + be) 2"2 + bd else break X into a;b and Y into c;d
() return MULT(a,c) 2" + (MULT(a,d)
+ MULT(b,c)) 22+ MULT(b,d)

Same thing for numbers in decimal!

n digits
R

— —>
n/2 digits n/2 digits

X=a10"2+p Y=c10"2+d

XxY=ac10"+ (ad + bc) 10" + bd

Multiplying (Divide & Conquer style)
12345678 * 21394276

1234*2139 1234*4276 5678*2139 5678*4276

252 468 714 1326
*104 + *102 + *102 + *1 =2639526

Xx Y =ac 10"+ (ad + bc) 102 + bd

Multiplying (Divide & Conquer style)
12345678 * 21394276
1234*2139 1234*4276 5678*2139 5678*4276
12*21 12*39 34*21 34*39

1*2 1% 2*2 2*1
2 1 4 2
Hence: 1221 = 2*102+ (1 +4)107 + 2 =252

Xx Y =ac 10" + (ad + bc) 1072 + bd

Multiplying (Divide & Conquer style)
12345678 * 21394276

2639526 5276584 12145242 24279128
*08 + *0* + 04 + M

= 264126842539128

X x Y =ac 10" + (ad + bc) 1072 + bd

Divide, Conquer, and Glue Divide, Conquer, and Glue

MULT(X,Y): if I X|=|Y]=1
then return XY,
else...

Divide, Conquer, and Glue Divide, Conquer, and Glue

MULT(X,Y): MULT(X,Y):

Mult(a,c)

Divide, Conquer, and Glue Divide, Conquer, and Glue

MULT(X,Y): MULT(X,Y):

Divide, Conquer, and Glue Divide, Conquer, and Glue

MULT(X,Y): MULT(X,Y):

Divide, Conquer, and Glue Divide, Conquer, and Glue

MULT(X,Y): MULT(X,Y):

Divide, Conquer, and Glue Time required by MULT

. XY =ac2" T(n) = time taken by MULT on two n-bit
MULT(X,Y): Rbcim T = tim y
+ bd

What is T(n)? What is its growth rate?

Big Question: Is it O(n2)?
T(n) =4 T(n/2) + (k’'n +K”)

conquering \ divide and
time glue

Recurrence Relation

T(1)=k for some constant k

T(n) =4 T(n/2) + k’n + Kk’ for constants k’ and k”’

MULT(X,Y):
If |X| = |Y| =1 then return XY
else break X into a;b and Y into c;d
return MULT(a,c) 2" + (MULT(a,d)
+ MULT(b,c)) 22+ MULT(b,d)

Technique: Labeled Tree Representation

Recurrence Relation

T(1)=1
T(n)=4T(n/2) +n

MULT(X,Y):

If |X| = Y| =1 then return XY

else break X into a;b and Y into c;d
return MULT(a,c) 2" + (MULT(a,d)
+ MULT(b,c)) 22+ MULT(b,d)

T(n)=4T(n/2) + (kK'n+K”)

conquering
time

X=a;b Y=c;d

XY =ac2" +
(ad+bc)2"2+ bd

\ divide and
glue

n/
T‘m i Level i is the sum of 4 copies of n/2i

n/2 + n/2 + n/2 + n/2

Level i is the sum of 4/ copies of n/2

n(1+2+4+8+ . .. +n) = n(2n-1) = 2n2-n

MULT revisited

MULT(X,Y):
If |X] = |Y| =1 then return XY
else break X into a;b and Y into c;d
return MULT(a,c) 2" + (MULT(a,d)
+ MULT(b,c)) 272+ MULT(b,d)

MULT calls itself 4 times. Can you see a way
to reduce the number of calls?

Divide and Conquer MULT: ©(n?) time
Grade School Multiplication: ©(n2) time

Gauss’ optimization

Input: a,b,c,d
Output: ac-bd, ad+bc

X,=a+b

X,=c+d

X3 =X X, =ac+ad+bc+bd
X,=ac

-X; =bc +ad

Karatsuba, Anatolii Alexeevich (1937-)

Sometime in the late 1950’s
Karatsuba had formulated
the first algorithm to break
the n2 barrier!

Gaussified MULT
(Karatsuba 1962)
MULT(X,Y):
If |X|] = |Y]| = 1 then return XY
else break X into a;b and Y into c;d
e:=MULT(a,c)
f :=MULT(b,d)
return
e 2"+ (MULT(a+b,c+d)—e-f) 2"2 +f

T(n)=3T(n/2) +n
Actually: T(n) =2 T(n/2) + T(n/2 + 1) + kn

n/2 + n/2 + n/2

Level i is the sum of 3i copies of n/2i (3/2)n= Level i is the sum of 3/ copies of n/2i

n(1+3/2+(3/2)2+ . . . + (3/2)l092N)

Dramatic Improvement for Large n

T(n) =3nl0923 _2n
= @(n|°92 3)
= @(n1.58...)

A huge savings over ©(n2) when n gets
large.

Multiplication Algorithms

“

Fastest Known n logn loglogn

The kind of analysis we have been
doing is only meaningful for very
large numbers.

On a computer, if you are
multiplying numbers that fit into
the word size, you would do this in
hardware that has gates working in
parallel

n 1584

“ log(n) loglog(n)

* Gauss’s Multiplication Trick
* Proof of Lower bound for addition

' ¢ Divide and Conquer

n .+ Solving Recurrences
pd

* Karatsuba Multiplication
Here’s What
You Need to
Know...

