
15-251
Great Theoretical Ideas

in Computer Science
for

Some

with Ben Wolf

AwesomeUtterly Mind-Blowing

with Matt!

Grade School Revisited:
How To Multiply Two Numbers

Lecture 23 (April 8, 2008)

Gauss
(a+bi)

Gauss’ Complex Puzzle

The above method costs $4.02

Remember how to multiply two
complex numbers a + bi and c + di?

(a+bi)(c+di) = [ac –bd] + [ad + bc] i

Input: a,b,c,d
Output: ac-bd, ad+bc

If multiplying two real numbers costs $1
and adding them costs a penny, what is
the cheapest way to obtain the output
from the input?

Can we do better?
Take out a piece of paper and try…

Hint:
Try doing a+b and c+d first

Gauss’ $3.05 Method

Input: a,b,c,d
Output: ac-bd, ad+bc

X1 = a + b
X2 = c + d
X3 = X1 X2 = ac + ad + bc + bd
X4 = ac
X5 = bd
X6 = X4 – X5 = ac - bd
X7 = X3 – X4 – X5 = bc + ad

c

$
$
$

c

c
cc

The Gauss optimization saves
one multiplication out of four.

It requires 25% less work.
+

T(n) = amount of time
grade school

addition uses to add
two n-bit numbers

* * * * * * * * * *
* * * * * * * * * *
* * * * * * * * * *

* * * * * * * * * * *

Time complexity of
grade school addition

We saw that T(n) was linear
T(n) = Θ(n)

Time complexity of
grade school multiplication

T(n) = The amount of
time grade school

multiplication uses to
add two n-bit numbers

We saw that T(n) was quadratic

T(n) = Θ(n2)

X
* * * * * * * *
* * * * * * * *

* * * * * * * *
* * * * * * * *

* * * * * * * *
* * * * * * * *

* * * * * * * *
* * * * * * * *

* * * * * * * *
* * * * * * * *

* * * * * * * * * * * * * * * *

n2

of bits in the numbers

t
i

m
e

Grade School Addition: Linear time
Grade School Multiplication: Quadratic time

No matter how dramatic the difference in the
constants, the quadratic curve will

eventually dominate the linear curve

Is there a sub-linear time
method for addition?

… what would this mean?

Any addition algorithm takes Ω(n) time

Claim: Any algorithm for addition must
read all of the input bits

Proof: Suppose there is a mystery
algorithm A that does not examine
each bit

Give A a pair of numbers. There must be
some unexamined bit position i in one of
the numbers

* * * * * * * * *
* * * * * * * * *

* * * * * * * * * *

A did not
read this bit
at position i

Any addition algorithm takes Ω(n) time

If A is not correct on the inputs, we
found a bug

If A is correct, flip the bit at position i and
give A the new pair of numbers. A gives
the same answer as before, which is now
wrong.

Grade school addition can’t
be improved upon by more

than a constant factor

Grade School Addition: Θ(n) time.
Furthermore, it is optimal

Grade School Multiplication: Θ(n2) time

Is there a clever algorithm to multiply two
numbers in linear time?

Despite years of research, no one
knows! If you resolve this question,
please let Matt know immediately.

Can we even break the quadratic time barrier?

In other words, can we do something very
different than grade school multiplication?

Why is he making us learn this?
Good question!

One thing that makes algorithm design
“Computer Science” is that solving a problem
in the most obvious way from its definitions is
often not the best way to get a solution.

… multiplication is a simple of example of this.

WHERE’S THE BEEF?

Divide And Conquer

An approach to faster algorithms:

DIVIDE a problem into smaller subproblems

CONQUER them recursively

GLUE the answers together so as to
obtain the answer to the larger problem

X =
Y =

a b

c d

X = a 2n/2 + b Y = c 2n/2 + d

n/2 bitsn/2 bits

n bits

X × Y = ac 2n + (ad + bc) 2n/2 + bd

X

Y

Multiplication of 2 n-bit numbers Multiplication of 2 n-bit numbers

X =
Y =

a b

c d
n/2 bitsn/2 bits

X × Y = ac 2n + (ad + bc) 2n/2 + bd

MULT(X,Y):
If |X| = |Y| = 1 then return XY
else break X into a;b and Y into c;d

return MULT(a,c) 2n + (MULT(a,d)
+ MULT(b,c)) 2n/2 + MULT(b,d)

Same thing for numbers in decimal!

X =
Y =

a b

c d

X = a 10n/2 + b Y = c 10n/2 + d

n/2 digitsn/2 digits

n digits

X × Y = ac 10n + (ad + bc) 10n/2 + bd

Multiplying (Divide & Conquer style)

X =
Y =

X × Y = ac 10n + (ad + bc) 10n/2 + bd

a b
c d

1234*2139 1234*4276 5678*2139 5678*4276

12345678 * 21394276

12*21 12*39 34*21 34*39

1*2 1*1 2*2 2*1

2 1 4 2

Hence: 12*21 = 2*102 + (1 + 4)101 + 2 = 252

Multiplying (Divide & Conquer style)

X =
Y =

X × Y = ac 10n + (ad + bc) 10n/2 + bd

a b
c d

1234*2139 1234*4276 5678*2139 5678*4276

12345678 * 21394276

12*21 12*39 34*21 34*39252 468 714 1326
*104 + *102 + *102 + *1 = 2639526

Multiplying (Divide & Conquer style)

X =
Y =

X × Y = ac 10n + (ad + bc) 10n/2 + bd

a b
c d

1234*2139 1234*4276 5678*2139 5678*4276

12345678 * 21394276

2639526 5276584 12145242 24279128
*108 + *104 + *104 + *1

= 264126842539128

Divide, Conquer, and Glue

MULT(X,Y)

if |X| = |Y| = 1
then return XY,
else…

Divide, Conquer, and Glue

MULT(X,Y):

X=a;b Y=c;d

Divide, Conquer, and Glue

MULT(X,Y):

Mult(a,c)
Mult(a,d) Mult(b,c)

Mult(b,d)

X=a;b Y=c;d

Divide, Conquer, and Glue

MULT(X,Y):

Mult(a,c)

Mult(a,d) Mult(b,c)
Mult(b,d)

X=a;b Y=c;d

Divide, Conquer, and Glue

MULT(X,Y):

ac

Mult(a,d) Mult(b,c)
Mult(b,d)

X=a;b Y=c;d

Divide, Conquer, and Glue

MULT(X,Y):

ac

Mult(a,d)

Mult(b,c)
Mult(b,d)

X=a;b Y=c;d

Divide, Conquer, and Glue

MULT(X,Y):

ac
ad Mult(b,c)

Mult(b,d)

X=a;b Y=c;d

Divide, Conquer, and Glue

MULT(X,Y):

ac
ad

Mult(b,c)

Mult(b,d)

X=a;b Y=c;d

Divide, Conquer, and Glue

MULT(X,Y):

ac
ad bc

Mult(b,d)

X=a;b Y=c;d

Divide, Conquer, and Glue

MULT(X,Y):

ac
ad bc

Mult(b,d)

X=a;b Y=c;d

Divide, Conquer, and Glue

MULT(X,Y):

ac
ad bc bd

XY = ac2n

+(ad+bc)2n/2

+ bd

Time required by MULT

T(n) = time taken by MULT on two n-bit
numbers

What is T(n)? What is its growth rate?

Big Question: Is it Θ(n2)?

T(n) = 4 T(n/2)

conquering
time

divide and
glue

+ (k’n + k’’)

Recurrence Relation

MULT(X,Y):
If |X| = |Y| = 1 then return XY
else break X into a;b and Y into c;d

return MULT(a,c) 2n + (MULT(a,d)
+ MULT(b,c)) 2n/2 + MULT(b,d)

T(1) = k for some constant k

T(n) = 4 T(n/2) + k’n + k’’ for constants k’ and k’’

Recurrence Relation

MULT(X,Y):
If |X| = |Y| = 1 then return XY
else break X into a;b and Y into c;d

return MULT(a,c) 2n + (MULT(a,d)
+ MULT(b,c)) 2n/2 + MULT(b,d)

T(1) = 1

T(n) = 4 T(n/2) + n

Technique: Labeled Tree Representation

T(n) = n + 4 T(n/2)

n

=

T(1) = 1

1=

T(n)

T(n)

T(n/2) T(n/2) T(n/2) T(n/2) ac
ad bc bd

T(n) = 4 T(n/2) +

conquering
time divide and

glue

(k’n + k’’)

X=a;b Y=c;d

XY = ac2n +
(ad+bc)2n/2 + bd

n=
T(n)

T(n/2) T(n/2) T(n/2) T(n/2)

n=
T(n)

T(n/2) T(n/2) T(n/2)

n/2

T
(n/4)

T
(n/4)

T
(n/4)

T
(n/4)

n=
T(n)

T(n/2) T(n/2)

n/2

T
(n/4)

T
(n/4)

T
(n/4)

T
(n/4)

n/2

T
(n/4)

T
(n/4)

T
(n/4)

T
(n/4)

n

n/2 + n/2 + n/2 + n/2

.

1+1

0

1

2

i

log2(n)

Level i is the sum of 4i copies of n/2i

n

n/2 + n/2 + n/2 + n/2

Level i is the sum of 4i copies of n/2i

.

1+1

2n =

4n =

2in =

(n)n =

1n =

n(1+2+4+8+ . . . +n) = n(2n-1) = 2n2-n

Divide and Conquer MULT: Θ(n2) time
Grade School Multiplication: Θ(n2) time

MULT revisited

MULT(X,Y):
If |X| = |Y| = 1 then return XY
else break X into a;b and Y into c;d

return MULT(a,c) 2n + (MULT(a,d)
+ MULT(b,c)) 2n/2 + MULT(b,d)

MULT calls itself 4 times. Can you see a way
to reduce the number of calls?

Input: a,b,c,d
Output: ac-bd, ad+bc

X1 = a + b
X2 = c + d
X3 = X1 X2 = ac + ad + bc + bd
X4 = ac
X5 = bd
X6 = X4 – X5 = ac - bd
X7 = X3 – X4 – X5 = bc + ad

c

$
$
$

c

c
cc

Gauss’ optimization

Karatsuba, Anatolii Alexeevich (1937-)

Sometime in the late 1950’s
Karatsuba had formulated
the first algorithm to break
the n2 barrier!

Gaussified MULT
(Karatsuba 1962)

T(n) = 3 T(n/2) + n

Actually: T(n) = 2 T(n/2) + T(n/2 + 1) + kn

MULT(X,Y):
If |X| = |Y| = 1 then return XY
else break X into a;b and Y into c;d

e : = MULT(a,c)
f := MULT(b,d)

return
e 2n + (MULT(a+b,c+d) – e - f) 2n/2 + f

n=
T(n)

T(n/2) T(n/2) T(n/2)

n=
T(n)

T(n/2) T(n/2)

n/2

T
(n/4)

T
(n/4)

T
(n/4)

n

n/2 + n/2 + n/2

.

1+1

0

1

2

i

log2(n)

Level i is the sum of 3i copies of n/2i

n

n/2 + n/2 + n/2

Level i is the sum of 3i copies of n/2i

.

1+1

3/2n =

9/4n =

(3/2)in =

(3/2)log nn =

1n =

n(1+3/2+(3/2)2+ . . . + (3/2)log2 n) = 3n1.58… – 2n

Dramatic Improvement for Large n

T(n) = 3nlog2 3 – 2n
= Θ(nlog2 3)
= Θ(n1.58…)

A huge savings over Θ(n2) when n gets
large. n 1.584

n2

Multiplication Algorithms

Kindergarten n2n

Grade School n2

Karatsuba n1.58…

Fastest Known n logn loglogn

n2 n 1.584

n log(n) loglog(n)

n 1.584

The kind of analysis we have been
doing is only meaningful for very

large numbers.

On a computer, if you are
multiplying numbers that fit into

the word size, you would do this in
hardware that has gates working in

parallel Here’s What
You Need to

Know…

• Gauss’s Multiplication Trick

• Proof of Lower bound for addition

• Divide and Conquer

• Solving Recurrences

• Karatsuba Multiplication

