.. 15-251

Great-Theoretical Ideas

in Computer Science
for

This is The Big Oh!

Lecture 22 (April 3, 2008)

6 Iote :

How to add 2 n-bit numbers

How to add 2 n-bit numbers

* %
* %
* %
* %
* %
* %
* %
* %
* %
* % %
.

How to add 2 n-bit numbers

£ 3

X X

*x % * * % % %

£ 3

£ 3

*x % % * % % %

* k% %

How to add 2 n-bit numbers

*x % % * * * % % %
| * % % % % % % % % %

*9q9 %
.l

| * % % % % % % % * %

* * % % * %

* * X% % % *

| “Grade school addition” |

How to add 2 n-bit numbers

*94q %
* | x| *
* | x| *

*x % % * X% % % *

*x % % * X% % % *

+

—

How to add 2 n-bit numbers

X X
X x X

X x X

* % % % % %
* % % % % %

* k% % *

Time complexity of
grade school addition

*okok ok ok Kk T(n) = amount of time
* %k k)k kK k%
+ .t x* ok gljade school
addition uses to add
two n-bit numbers

*i!*********

What do we mean by “time”?

Our Goal

We want to define “time” in a way
that transcends implementation
details and allows us to make
assertions about grade school
additionin a very general yet
useful way.

Roadblock ???

A given algorithm will take different
amounts of time on the same inputs
depending on such factors as:

— Processor speed
— Instructionset

— Disk speed

— Brand of compiler

On any reasonable computer, adding 3
bits and writing down the two bit answer
can be done in constant time

Pick any particular computer M and define ¢
to be the time it takes to perform | | on
that computer.

Total time to add two n-bit numbers
using grade school addition:

cn [i.e., c time for each of n columns]

On another computer M’, the time
to perform Dmay bec’.

Total time to add two n-bit numbers
using grade school addition:

9

c’n [c’ time for each of n columns]

® 3 - e~

of bitsin the numbers

The fact that we get a line is invariant
under changes of implementations.
Different machines result in different
slopes, but the time taken grows
linearly as input size increases.

Thus we arrive at an implementation-
independent insight:

Grade School Addition is a linear time
algorithm

This process of abstracting away details
and determining the rate of resource
usage in terms of the problem size n is
one of the fundamental ideas in
computer science.

Time vs Input Size

For any algorithm, define
Input Size = # of bits to specify its inputs.

Define

TIME, = the worst-case amount of
time used by the algorithm
on inputs of size n

We often ask: What is the growth rate of
Time, ?

How to multiply 2 n-bit numbers.

X Xk kkkkkkx
Xk kkkkKkkx

Kk kk kKKK
*KhkKkkkk KK
Kk Kk kkk KK
Kk kkkk KK
n2 Kk kK Kk KKK
Kk Kk kkk KK
KhkKkkkk KK
KhkKkkkk KK

khkhkkkhkkhkkhkkhkkhkkhkkhkkhkhkhk*k

How to multiply 2 n-bit numbers.

LA R

The total time is bounded by
cn? (abstracting away the
implementation details).

n?

Xk Kk kkkx*kx

khkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkhk*k

Grade School Addition: Linear time
Grade School Multiplication: Quadratic time

® 3 -~

of bitsin the numbers

No matter how dramatic the difference in the
constants, the quadratic curve will eventually
dominate the linear curve

How much time does it take to
square the number n using
grade school multiplication?

Grade School Multiplication:
Quadratic time

® 3 - e~

of bitsin numbers

c(log n)2 time to square the number n
Input size is measured in bits,
unless we say otherwise.

How much time does it take?

Nursery School Addition
Input: Two n-bit numbers, aand b
Output:a+b

Start at a and increment (by 1) b times

Tn)="?

If b =000...0000, then NSA takes almost no time
If b=1111...11111, then NSA takes cn2" time

Worst Case Time

Worst Case Time T(n) for algorithm A:

T(n) = IVIax[all permissible inputs X of size n]
(Running time of algorithm A on input X).

Whatis T(n)?

Kindergarten Multiplication
Input: Two n-bit numbers, aand b
Output:a*b

Start with a and add a, b-1 times

Remember, we always pick the WORST
CASE input for the input size n.

Thus, T(n) =cn2"

Thus, Nursery School adding and
Kindergarten multiplication are
exponential time.

They scale HORRIBLY as input size
grows.

Grade school methods scale

polynomially: just linear and quadratic.

Thus, we can add and multiply fairly
large numbers.

If T(n) is not polynomial, the algorithm
is not efficient: the run time scales too
poorly with the input size.

This will be the yardstick with which
we will measure “efficiency”.

Multiplication is efficient, what about
“reverse multiplication”?

Let’s define FACTORING(N) to be any
method to produce a non-trivial factor
of N, or to assert that N is prime.

Factoring The Number N
By Trial Division
Trial division up to VN
fork=2toVvNdo
if k| N then
return “N has a non-trivial factor k”
return “N is prime”
c VN (logN)2 time if division is ¢ (logN)2time
Is this efficient?

No! The input length n =log N. Hence
we’re using ¢ 2"2 n2 time.

Can we do better?

We know of methods for FACTORING that
are sub-exponential (about 2" time) but
nothing efficient.

Notation to Discuss Growth Rates

For any monotonic function f from the
positive integers to the positive integers,
we say

“ = O(n)” or “f is O(n)”

If some constant times n eventually
dominates f

[Formally: there exists a constant ¢ such
that for all sufficiently large n: f(n)<cn]

f =0(n) means that thereis a line
that can be drawn that stays above
f from some pointon

® 3 - e~

of bitsin numbers

Other Useful Notation: Q

For any monotonic function f from the
positive integers to the positive integers,
we say

“f = Q(n)” or “f is Q(n)”

If f eventually dominates some constant
timesn

[Formally: there exists a constant ¢ such
that for all sufficiently large n: f(n) >cn]

f = Q(n) means that there is a line
that can be drawn that stays below
f from some pointon

® 3 - e~

of bitsin numbers

Yet More Useful Notation: ©

For any monotonic function f from the
positive integers to the positive integers,
we say

“f = O(n)” or “f is O(n)”
if: f=0(n) and f=Q(n)

f =0O(n) means thatf can be
sandwiched between two lines
from some pointon.

® 3 - e~

of bitsin numbers

Notation to Discuss Growth Rates

For any two monotonic functions f and g
from the positive integers to the positive
integers, we say

“f = 0(g)” or “f is O(g)”

If some constant times g eventually
dominates f

[Formally: there exists a constant ¢ such
that for all sufficiently large n: f(n) <c g(n)]

f = O(g) means that there is some
constantc such that c g(n) stays
above f(n) from some pointon.

1.59

® 3 - e~

of bitsin numbers

Other Useful Notation: Q

For any two monotonic functions f and g
from the positive integers to the positive
integers, we say

“f = 0(g)” or “f is Q(g)”

If f eventually dominates some constant
timesg

[Formally: there exists a constant ¢ such
that for all sufficiently large n: f(n) >c g(n)]

Yet More Useful Notation: ©

For any two monotonic functions f and g
from the positive integers to the positive
integers, we say

“f = O(g)” or “f is O(g)”
If:f =0(g) and f=Q(g)

*n=0(n?)? Yes!

Takec =1
Forall n>1, it holds that n < cn?

10

*n=0(n2)? Yes!

*n=0(n) ? No

Suppose it were true thatn <c Vn
for some constant c and large enough n

Cancelling, we would get Vn < c.
Which is false for n > c?

*n=0(n?? Yes!

* n=0(Vn) ? No
*3n2+4n+4=0(n2)? Yes!
*3n2+4n+4=Q(n?)? Yes!
*n2=Q(nlogn)? Yes!

* n2logn=0(n?)? No

e f=0(g) and g = O(h)
thenf=0(h) ? Yes!

f(n) <c g(n) for all n>n,.
andg(n)<c’h(n) foralln>ny’.

So f(n) < (cc’) h(n) for all n > max(n,, ny’)

*+ f=0(9)

]
then g = Q(f) Yes!

Names For Some Growth Rates

Linear Time: T(n)=0O(n)
Quadratic Time: T(n) = O(n?)
Cubic Time: T(n)=0(n3)

Polynomial Time:
for some constant k, T(n) = O(nk).
Example: T(n) = 13n%

11

Large Growth Rates

Exponential Time:
for some constant k, T(n) = O(k")
Example: T(n) =n2"= 0O(3")

Small Growth Rates

Logarithmic Time: T(n) = O(logn)
Example: T(n) = 15log,(n)

Polylogarithmic Time:
for some constant k, T(n) = O(logX(n))

Note: These kind of algorithms can’t
possibly read all of their inputs.

A very common example of logarithmic
time is looking up a word in a sorted
dictionary (binary search)

Some Big Ones

Doubly Exponential Time means
that for some constant k

T(n) = 22"
Triply Exponential
T(n) = 22°""

Faster and Faster: 2STACK

2STACK(0)=1
2STACK(n) = 22STACK(n-1)
2STACK(1)=2

2STACK(2) = 4 2STACK(n) = 2

2 o o o
2STACK(3) = 16 2 2 2
2STACK(4) = 65536 ot n2e
2STACK(5) > 1080

= atoms in universe

12

And the inverse of 2STACK: log*

2STACK(0)=1
2STACK(n) = 22STACK(n-1)

2STACK(1)=2 log*(2)=1
2STACK(2)=4 log*(4) =2
2STACK(3)=16 log*(16) =3
2STACK(4) = 65536 log*(65536)=4
2STACK(5) = 108° log*(atoms) =5

= atoms in universe

log*(n) = # of times you have to apply the log
function to n to makeit<1

So an algorithm that can be shown to
runin O(n log*n) Time is Linear Time
for all practical purposes!!

Ackermann’s Function

A(O,n)=n+1forn>0
A(m,0)=A(m-1,1)form=>1
A(m,n)=Am-1,A(m,n-1))form,n>1

A(4,2) > # of particles in universe

A(5,2) can’t be written out as
decimal in this universe

Ackermann’s Function

A(O,n)=n+1forn>0
A(m,0)=A(m-1,1)form=>1
A(m,n)=Am-1,A(m,n-1))form,n>1

Define: A’(k) = A(k,k)
Inverse Ackerman a(n) is the inverse of A’
Practically speaking: n x a(n) <4n

13

The inverse Ackermann function - in
fact, ©(n a(n)) arises in the seminal
paper of:

D. D. Sleator and R. E. Tarjan. A data
structure for dynamic trees. Journal of
Computer and System Sciences,
26(3):362-391,1983.

Here’s What
You Need to
Know...

* How is “time” measured
* Definitions of:
*0,Q,0
¢ linear, quadratic time, etc
log(n)
¢ Ackerman Function

14

