Some Great Theoretical Ideas in Computer Science

Luis von Ahn
Science of the Web

15-396 A TTh 3:00-4:20pm
Social Network Theory Web Spam
PageRank Recommender Systems
Internet Memes Digg Network Dynamics

15-251
Science of the Web
Graphs
Lecture 20 (March 27, 2008)

What's a tree?
A tree is a connected graph with no cycles

Tree

Not Tree
How Many n-Node Trees?

1: O
2: O O
3: O O O
4: O O O O
5: O O O O O

Notation

In this lecture:

- \(n \) will denote the number of nodes in a graph
- \(e \) will denote the number of edges in a graph
Theorem: Let G be a graph with n nodes and e edges. The following are equivalent:

1. G is a tree (connected, acyclic)
2. Every two nodes of G are joined by a unique path
3. G is connected and $n = e + 1$
4. G is acyclic and $n = e + 1$
5. G is acyclic and if any two non-adjacent points are joined by a line, the resulting graph has exactly one cycle

To prove this, it suffices to show $1 \Rightarrow 2 \Rightarrow 3 \Rightarrow 4 \Rightarrow 5 \Rightarrow 1$

1 \Rightarrow 2

1. G is a tree (connected, acyclic)

2. Every two nodes of G are joined by a unique path

Proof: (by contradiction)
Assume G is a tree that has two nodes connected by two different paths:

Then there exists a cycle!

2 \Rightarrow 3

2. Every two nodes of G are joined by a unique path

3. G is connected and $n = e + 1$

Proof: (by induction)
Assume true for every graph with $< n$ nodes
Let G have n nodes and let x and y be adjacent

Let n_1, e_1 be number of nodes and edges in G_1
Then $n = n_1 + n_2 = e_1 + e_2 + 2 = e + 1$
3 \Rightarrow 4. G is connected and n = e + 1
4. G is acyclic and n = e + 1
Proof: (by contradiction)
Assume G is connected with n = e + 1, and G has a cycle containing k nodes
Note that the cycle has k nodes and k edges
Start adding nodes and edges until you cover the whole graph
Number of edges in the graph will be at least n

Corollary: Every nontrivial tree has at least two endpoints (points of degree 1)
Proof (by contradiction):
Assume all but one of the points in the tree have degree at least 2
In any graph, sum of the degrees = 2e
Then the total number of edges in the tree is at least \((2n-1)/2 = n - 1/2 > n - 1\)

How many labeled trees are there with three nodes?

```
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>
```

How many labeled trees are there with four nodes?

```
a
b
c
d```

```
```

```
```

```
```
How many labeled trees are there with five nodes?

- 5 labelings
- $5 \times 4 \times 3$
- $5!/2$ labelings

125 labeled trees

How many labeled trees are there with $n$ nodes?

- 3 labeled trees with 3 nodes
- 16 labeled trees with 4 nodes
- 125 labeled trees with 5 nodes

$n^{n-2}$ labeled trees with $n$ nodes

Cayley’s Formula

The number of labeled trees on $n$ nodes is $n^{n-2}$

The proof will use the correspondence principle

Each labeled tree on $n$ nodes corresponds to

A sequence in $\{1,2,\ldots,n\}^{n-2}$ (that is, $n-2$ numbers, each in the range $[1..n]$)
How to make a sequence from a tree?
Loop through $i$ from 1 to $n-2$
   Let $L$ be the degree-1 node with the lowest label
   Define the $i^{th}$ element of the sequence as the label of the node adjacent to $L$
   Delete the node $L$ from the tree

Example:

![Tree with labels 1 to 8]

How to reconstruct the unique tree from a sequence $S$:
Let $I = \{1, 2, 3, \ldots, n\}$
Loop until $S$ is empty
   Let $i =$ smallest # in $I$ but not in $S$
   Let $s =$ first label in sequence $S$
   Add edge $(i, s)$ to the tree
   Delete $i$ from $I$
   Delete $s$ from $S$
Add edge $(a,b)$, where $I = \{a,b\}$

![Tree with labels 1 to 8]

Spanning Trees
A spanning tree of a graph $G$ is a tree that touches every node of $G$ and uses only edges from $G$

![Example spanning trees]

Every connected graph has a spanning tree

A graph is planar if it can be drawn in the plane without crossing edges

![Planar graph example]
Examples of Planar Graphs

http://www.planarity.net

Faces
A planar graph splits the plane into disjoint faces

Euler’s Formula
If $G$ is a connected planar graph with $n$ vertices, $e$ edges and $f$ faces, then $n - e + f = 2$
Rather than using induction, we’ll use the important notion of the dual graph.

Dual = put a node in every face, and an edge for each edge joining two adjacent faces.

Let $G^*$ be the dual graph of $G$.

Let $T$ be a spanning tree of $G$.

Let $T^*$ be the graph where there is an edge in dual graph for each edge in $G - T$.

Then $T^*$ is a spanning tree for $G^*$.

$n = e_T + 1$  \quad  n + f = e_T + e_{T^*} + 2$

$f = e_{T^*} + 1$  \quad  = e + 2$

---

Corollary: Let $G$ be a simple planar graph with $n > 2$ vertices. Then:

1. $G$ has a vertex of degree at most 5
2. $G$ has at most $3n - 6$ edges

Proof of 1:

In any graph, $(\text{sum of degrees}) = 2e$

Assume all vertices have degree $\geq 6$

Then $e \geq 3n$

Furthermore, since $G$ is simple, $3f \leq 2e$

So $3n + 3f \leq 3e \Rightarrow 3(n-e+f) \leq 0$, contradict.

---

Graph Coloring

A coloring of a graph is an assignment of a color to each vertex such that no neighboring vertices have the same color.
Graph Coloring
Arises surprisingly often in CS
Register allocation: assign temporary variables to registers for scheduling instructions. Variables that interfere, or are simultaneously active, cannot be assigned to the same register

Theorem: Every planar graph can be 6-colored
Proof Sketch (by induction):
Assume every planar graph with less than \( n \) vertices can be 6-colored
Assume \( G \) has \( n \) vertices
Since \( G \) is planar, it has some node \( v \) with degree at most 5
Remove \( v \) and color by Induction Hypothesis

Not too difficult to give an inductive proof of 5-colorability, using same fact that some vertex has degree \( \leq 5 \)
4-color theorem remains challenging!

Implementing Graphs
Adjacency Matrix
Suppose we have a graph G with n vertices. The adjacency matrix is the n x n matrix A = [a_{ij}] with:

- \( a_{ij} = 1 \) if (i,j) is an edge
- \( a_{ij} = 0 \) if (i,j) is not an edge

Good for dense graphs!

Example

\[
A = \begin{pmatrix}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0 \\
\end{pmatrix}
\]

Counting Paths
The number of paths of length k from node i to node j is the entry in position (i,j) in the matrix \( A^k \)

\[
A^2 = \begin{pmatrix}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0 \\
\end{pmatrix}
\begin{pmatrix}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0 \\
\end{pmatrix}
= \begin{pmatrix}
3 & 2 & 2 & 2 \\
2 & 3 & 2 & 2 \\
2 & 2 & 3 & 2 \\
2 & 2 & 2 & 3 \\
\end{pmatrix}
\]

Adjacency List
Suppose we have a graph G with n vertices. The adjacency list is the list that contains all the nodes that each node is adjacent to

Good for sparse graphs!
Trees
- Counting Trees
- Different Characterizations

Planar Graphs
- Definition
- Euler’s Theorem
- Coloring Planar Graphs

Adjacency Matrix and List
- Definition
- Useful for counting

Example

1: 2, 3
2: 1, 3, 4
3: 1, 2, 4
4: 2, 3