Some 15-251
Great Theoretical Ideas
in Computer Science
for

Group Theory II

Lecture 19 (March 25, 2008)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1	2 3		4	
5	6	7	8	
9	10	11	12	
13	15	14		

Permutations

A permutation of a set X is a bijection $\alpha: X \to X$ We denote the set of all permutations of X = {1,2,...,n} by S_n

$$|S_n| = n!$$

Notation:

$$\alpha = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 3 & 2 & 1 & 5 \end{bmatrix}$$
 means $\alpha(1)=2, \alpha(2)=3, ..., \alpha(5)=5$

Composition

Define the operation "•" on S_n to mean the composition of two permutations

As shorthand, we will write $\alpha {\scriptstyle \bullet \beta}$ as $\alpha \beta$

To compute $\alpha\beta$, first apply β and then α : $\alpha\beta(i) = \alpha(\beta(i))$

$$\begin{bmatrix} 123 \\ 132 \end{bmatrix} \begin{bmatrix} 123 \\ 231 \end{bmatrix} = \begin{bmatrix} 123 \\ 321 \end{bmatrix}$$
 permutation "fixes 2"
$$\begin{bmatrix} 123 \\ 321 \end{bmatrix} \begin{bmatrix} 123 \\ 231 \end{bmatrix} = \begin{bmatrix} 123 \\ 213 \end{bmatrix}$$

Groups

A group G is a pair (S, \bullet) , where S is a set and \bullet is a binary operation on S such that:

- 1. ♦ is associative
- 2. (Identity) There exists an element $e\in\,S$ such that:

 $e \diamond a = a \diamond e = a$, for all $a \in S$

3. (Inverses) For every $a \in S$ there is $b \in S$ such that: $a \cdot b = b \cdot a = e$

If ♦ is commutative, then G is called a commutative group

(S_n, •) is a Group

Is • associative on S_n? YES!

Is there an identity? YES: The identity function

Does every element have an inverse? YES!

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 1 & 4 & 2 & 3 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 5 & 3 & 1 \end{bmatrix}$$

Is the group commutative? No!

Cycles

Let $\mathbf{i_1}, \mathbf{i_2}, ..., \mathbf{i_r}$ be distinct integers between 1 and n. Define $(\mathbf{i_1} \ \mathbf{i_2} \ ... \ \mathbf{i_r})$ to be the permutation α that fixes the remaining n-r integers and for which:

$$\alpha(\mathsf{i}_1) {=} \ \mathsf{i}_2, \ \alpha(\mathsf{i}_2) {=} \ \mathsf{i}_3, \ \ldots, \ \alpha(\mathsf{i}_{r\text{-}1}) {=} \ \mathsf{i}_r, \ \alpha(\mathsf{i}_r) {=} \ \mathsf{i}_1$$

$$(1\ 2\ 3\ 4) = \begin{bmatrix} 1\ 2\ 3\ 4 \\ 2\ 3\ 4\ 1 \end{bmatrix}$$

$$(15342) = \begin{bmatrix} 12345 \\ 51423 \end{bmatrix}$$

Examples

$$(1\ 5\ 2)(2\ 4\ 3) = \begin{bmatrix} 1\ 2\ 3\ 4\ 5 \\ 5\ 4\ 1\ 3\ 2 \end{bmatrix}$$

$$(123)(45) = \begin{bmatrix} 12345 \\ 23154 \end{bmatrix}$$

Two cycles are disjoint if every x moved by one is fixed by the other

 $(i_1 i_2 ... i_r)$ is called a cycle or an r-cycle

Express α as the product of disjoint cycles

$$\alpha = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 6 & 4 & 1 & 2 & 5 & 3 & 8 & 9 & 7 \end{bmatrix}$$
$$= (1 6 3)(2 4)(5)(7 8 9)$$

Theorem: Every permutation can be uniquely factored into the product of disjoint cycles

Express β as the product of disjoint cycles

$$\beta = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & 3 & 2 & 4 & 6 & 1 & 8 & 9 & 5 \end{bmatrix}$$

$$= (178956)(23)(4)$$

Definition: A transposition is a 2-cycle

Express (1 2 3 4 5 6) as the product of transpositions (no necessarily disjoint):

$$(123456) = (16)(15)(14)(13)(12)$$

Theorem: Every permutation can be factored as the product of transpositions

Is it unique? No!

$$(1\ 3)(1\ 2) = (1\ 2\ 3)$$

$$(1\ 3)(4\ 2)(1\ 2)(1\ 4) = (1\ 2\ 3)$$

But the parity is unique!

There are many ways to factor a permutation into transpositions

But, every factorization into transpositions has the same parity of the number of transpositions

Definition:

A permutation is even if it can be factored into an even number of transpositions

A permutation is odd if it can be factored into an odd number of transpositions

Examples

$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{bmatrix} = (1 & 2 & 3) = (1 & 3)(1 & 2) \text{ is an}$$
even permutation

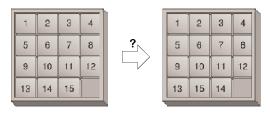
$$\begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{bmatrix} = (1 & 3) \text{ is an odd permutation}$$

Generators

A set $T \subseteq S$ is said to generate the group $G = (S, \bullet)$ if every element of S can be expressed as a finite product of elements in T

The set T = $\{(x y) | (x y) \text{ is a transposition in } S_n\}$ generates S_n

The 15 Puzzle



Let's Start Simpler

2 1 1 3 1 1 3 2 3 3 2 2 $\begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{bmatrix}$ $\begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{bmatrix}$ $\begin{bmatrix} 123 \\ 123 \end{bmatrix}$ 123 312 Notation: We will read the numbers in this order:

and we will ignore the blank

Reachable Permutations

$$\begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{bmatrix} = (1)$$

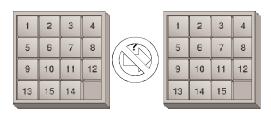
$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{bmatrix} = (1 & 3)(1 & 2)$$

$$\begin{bmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{bmatrix} = (1 & 2)(1 & 3)$$
They are all even!!!

1 2 2 2 2

No, because $\begin{bmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{bmatrix}$ is an odd permutation

The 15 Puzzle



Similarly, it is possible to prove that only even permutations are possible in the 15 puzzle

Definition: The order of an element a of G is the smallest positive integer n such that an = e

(123)(123)(123) = (1)

What is the order of an r-cycle? r

Subgroups

Let $G = (S, \bullet)$ be a group. A non-empty subset H of G is a subgroup of G if:

1. $s \in H$ $\Rightarrow s^{-1} \in H$ 2. $s,t \in H$ $\Rightarrow s \land t \in H$

2. s,t∈ H ⇒ s ♦ t ∈ H

Theorem: If H is a subgroup of G, then e (the identity of G) is in H

Proof:

Let $h \in H$

Then $h^{-1} \in H$

Therefore $e = h + h^{-1} \in H$

Examples

Is $\{(1)\}$ a subgroup of S_n ? Yes Is $\{(1), (123)\}$ a subgroup of S_3 ? No because $(123)^2$ is not in it Is $\{0, 3\}$ a subgroup of Z_6 ? Yes

Lagrange's Theorem

If H is a subgroup of G then |H| divides |G| Proof: For $t \in G$, look at the set Ht = { ht | h \in H} Fact 1: if $a,b \in G$, then Ha and Hb are either identical or disjoint

Proof of Fact 1: Let $x \in Ha \cap Hb$. Then ha = x = kb where $h, k \in H$ So $k^{-1}h = ba^{-1} \in H$ and $(ba^{-1})^{-1} = ab^{-1} \in H$ Then Ha = Hb because:

If $x \in Hb$ then x = jb ($j \in H$) so $x = jba^{-1}a \in Ha$ If $x \in Ha$ then x = ja ($j \in H$) so $x = jab^{-1}b \in Hb$

Lagrange's Theorem

If H is a subgroup of G then |H| divides |G| Proof: For $t \in G$, look at the set Ht = { ht | h \in H} Fact 1: if $a,b \in G$, then Ha and Hb are either identical or disjoint

Fact 2: if a ∈ G, then |Ha| = |H|

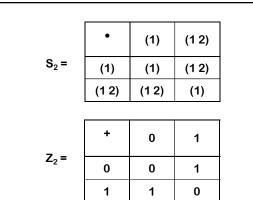
Proof of Fact 2: The function f(s) = sa is a bijection from H to Ha

From Fact 1 and Fact 2, we see that G can be partitioned into sets of size |H|

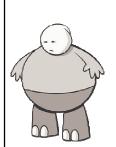
For p prime, what are all the subgroups of Z_n ?

By Lagrange's Theorem, the order of any subgroup of Z_p must divide p. Therefore, the only subgroups must have size 1 or p:

 $\{0\}$ and Z_p are the only subgroups of Z_p



Are S ₃ and Z ₆ Isomorphic?								
$\mid S_3 \mid$	(1)	(1 2)	(1 3)	(23)	(1 2 3)	(1 3 2)		
(1)	(1)	(1 2)	(1 3)	(23)	(1 2 3)	(1 3 2)		
(1 2)	(1 2)	(1)	(1 3 2)	(1 2 3)	(23)	(1 3)		
(1 3)	(1 3)	(1 2 3)	(1)	(1 3 2)	(1 2)	(23)		
(2 3)	(23)	(1 3 2)	(1 2 3)	(1)	(1 3)	(1 2)		
(1 2 3)	(1 2 3)	(1 3)	(23)	(1 2)	(1 3 2)	(1)		
(1 3 2)	(1 3 2)	(23)	(1 2)	(1 3)	(1)	(1 2 3)		



Here's What You Need to Know...

Permutations

Notation Compositions Cycles Transpositions

Group Theory

Subgroups LaGrange's Theorem Isomorphisms