Some 15-251
Great Theoretical Ideas
in Computer Science
for

Algebraic Structures: Group Theory

Lecture 18 (March 20, 2008)

Today we are going to study the abstract properties of binary operations

Rotating a Square in Space

Imagine we can pick up the square, rotate it in any way we want, and then put it back on the white frame

Symmetries of the Square

 Y_{SQ} = { R_0 , R_{90} , R_{180} , R_{270} , $F_{|}$, F_{-} , $F_{/}$, F_{\setminus} }

Composition

Define the operation "•" to mean "first do one symmetry, and then do the next"

For example,

R₉₀ • R₁₈₀ means "first rotate 90° clockwise and then 180°"

= R₂₇₀

F_| • R₉₀ means "first flip horizontally

and then rotate 90°"

 $= F_{/}$

Question: if $a,b \in Y_{SQ}$, does $a \bullet b \in Y_{SQ}$? Yes!

	R_0	R ₉₀	R ₁₈₀	R ₂₇₀	F	F_	F⁄	F、
R_0	R_0	R ₉₀	R ₁₈₀	R ₂₇₀	F	F_	F _/	F _\
R ₉₀	R ₉₀	R ₁₈₀	R ₂₇₀	R_0	F _\	F>	F	F_
R ₁₈₀	R ₁₈₀	R ₂₇₀	R_0	R ₉₀	F_	F	F _\	F _/
R ₂₇₀	R ₂₇₀	R_0	R ₉₀	R ₁₈₀	F/	F _\	F_	F
F	F	F/	F_	F _\	R_0	R ₁₈₀	R ₉₀	R ₂₇₀
F_	F_	F _\	F	F/	R ₁₈₀	R_0	R ₂₇₀	R ₉₀
F,	F/	F_	F _\	F	R ₂₇₀	R ₉₀	R_0	R ₁₈₀
F _\	F _\	F	F/	F_	R ₉₀	R ₂₇₀	R ₁₈₀	R_0

Some Formalism

If S is a set, $S \times S$ is:

the set of all (ordered) pairs of elements of S

$$S \times S = \{ (a,b) \mid a \in S \text{ and } b \in S \}$$

If S has n elements, how many elements does S \times S have? $\quad n^2 \quad$

Formally, • is a function from $Y_{SQ} \times Y_{SQ}$ to Y_{SQ}

$$\bullet: Y_{SQ}\!\times\!Y_{SQ} \!\to\! Y_{SQ}$$

As shorthand, we write •(a,b) as "a • b"

Binary Operations

"•" is called a binary operation on Y_{SQ}

Definition: A binary operation on a set S is a function $lack : S \times S \to S$

Example:

The function f: $N \times N \to N$ defined by f(x,y) = xy + y is a binary operation on N

Associativity

A binary operation ♦ on a set S is associative if:

for all $a,b,c \in S$, (a + b) + c = a + (b + c)

Examples:

Is f: $N \times N \rightarrow N$ defined by f(x,y) = xy + y associative?

(ab + b)c + c = a(bc + c) + (bc + c)? NO!

Is the operation • on the set of symmetries of the square associative? YES!

Commutativity

A binary operation ♦ on a set S is commutative if

For all $a,b \in S$, a + b = b + a

Is the operation • on the set of symmetries of the square commutative? NO!

$$R_{90} \bullet F_1 \neq F_1 \bullet R_{90}$$

Identities

 R_0 is like a null motion

Is this true: $\forall a \in Y_{SQ}$, $a \cdot R_0 = R_0 \cdot a = a$? YES!

R₀ is called the identity of • on Y_{SQ}

In general, for any binary operation \bullet on a set S, an element $e \in S$ such that for all $a \in S$, $e \bullet a = a \bullet e = a$

is called an identity of ♦ on S

Inverses

Definition: The inverse of an element $a\in\,Y_{SQ}$ is an element b such that:

$$a \cdot b = b \cdot a = R_0$$

Examples:

R₉₀ inverse: R₂₇₀

R₁₈₀ inverse: R₁₈₀

 F_{\parallel} inverse: F_{\parallel}

Every element in Y_{SQ} has a unique inverse

	R_0	R ₉₀	R ₁₈₀	R ₂₇₀	F	F_	F _/	F、
R_0	R_0	R ₉₀	R ₁₈₀	R ₂₇₀	F	F_	F _/	F _\
R ₉₀	R ₉₀	R ₁₈₀	R ₂₇₀	R_0	F _\	F/	F	F_
R ₁₈₀	R ₁₈₀	R ₂₇₀	R_0	R ₉₀	F_	F	F _\	F _/
R ₂₇₀	R ₂₇₀	R_0	R ₉₀	R ₁₈₀	F>	F _\	F_	F
F	F_	F/	F	F′	R_0	R ₁₈₀	R ₉₀	R ₂₇₀
F_	F_	F _\	F	F _/	R ₁₈₀	R_0	R ₂₇₀	R ₉₀
F,	F/	F_	F _\	F	R ₂₇₀	R ₉₀	R_0	R ₁₈₀
F _\	F _\	F	F _/	F_	R ₉₀	R ₂₇₀	R ₁₈₀	R ₀

Groups

A group G is a pair (S, \bullet) , where S is a set and \bullet is a binary operation on S such that:

- 1. ♦ is associative
- 2. (Identity) There exists an element $e \in S$ such that:

e + a = a + e = a, for all $a \in S$

3. (Inverses) For every $a \in S$ there is $b \in S$ such that: $a \cdot b = b \cdot a = e$

If ♦ is commutative, then G is called a commutative group

Examples

Is (N,+) a group?

Is + associative on N? YES!

Is there an identity? YES: 0

Does every element have an inverse? NO!

(N,+) is NOT a group

Examples

Is (Z,+) a group?

Is + associative on Z? YES!

Is there an identity? YES: 0

Does every element have an inverse? YES!

(Z,+) is a group

Examples

Is (Y_{SQ}, •) a group?

Is • associative on Y_{SQ}? YES!

Is there an identity? YES: R₀

Does every element have an inverse? YES!

(Y_{SQ}, •) is a group

Examples

Is (Z_n,+) a group?

 $(Z_n is the set of integers modulo n)$

Is + associative on Z_n ? YES!

Is there an identity? YES: 0

Does every element have an inverse? YES!

 $(Z_n, +)$ is a group

Identity Is Unique

Theorem: A group has at most one identity element

Proof:

Suppose e and f are both identities of G=(S, *)

Then f = e + f = e

Inverses Are Unique

Theorem: Every element in a group has a unique inverse

Proof:

Suppose b and c are both inverses of a

Then b = b + e = b + (a + c) = (b + a) + c = c

A group G=(S, *) is finite if S is a finite set

Define |G| = |S| to be the order of the group (i.e. the number of elements in the group)

What is the group with the least number of elements? $G = (\{e\}, \bullet)$ where $e \bullet e = e$

How many groups of order 2 are there?

Generators

A set $T \subseteq S$ is said to generate the group $G = (S, \bullet)$ if every element of S can be expressed as a finite product of elements in T

Question: Does $\{R_{90}\}$ generate Y_{SQ} ? NO!

Question: Does $\{F_1, R_{90}\}$ generate Y_{SQ} ? YES!

An element $g \in S$ is called a generator of $G=(S, \bullet)$ if $\{g\}$ generates G

Does Y_{SQ} have a generator? NO!

Generators For $(Z_n,+)$

Any $a \in Z_n$ such that GCD(a,n)=1 generates $(Z_n,+)$

Claim: If GCD(a,n) = 1, then the numbers a, 2a, ..., (n-1)a, na are all distinct modulo n

Proof (by contradiction):

Suppose xa = ya (mod n) for $x,y \in \{1,...,n\}$ and $x \neq y$

Then n | a(x-y)

Since GCD(a,n) = 1, then $n \mid (x-y)$, which cannot happen

If G = (S, \star), we use aⁿ denote (a \star a \star ... \star a)

n times

Definition: The order of an element a of G is the smallest positive integer n such that aⁿ = e

The order of an element can be infinite!

Example: The order of 1 in the group (Z,+) is infinite

What is the order of F_1 in Y_{SQ} ? 2

What is the order of R_{90} in Y_{SQ} ? 4

Orders

Theorem: Let x be an element of G. The order of x divides the order of G

Corollary: If p is prime, $a^{p-1} = 1 \pmod{p}$

(This is called Fermat's Little Theorem)

{1,...,p-1} is a group under multiplication modulo p

Lord Of The Rings

We can define more than one operation on a set

For example, in \mathbf{Z}_n we can do addition and multiplication modulo n

A ring is a set together with two operations

Definition:

A ring R is a set together with two binary operations + and x, satisfying the following properties:

- 1. (R,+) is a commutative group
- 2. x is associative
- 3. The distributive laws hold in R: $(a + b) \times c = (a \times c) + (b \times c)$

$$a \times (b + c) = (a \times b) + (a \times c)$$

Fields

Definition:

A field F is a set together with two binary operations + and x, satisfying the following properties:

- 1. (F,+) is a commutative group
- 2. (F-{0},x) is a commutative group
- 3. The distributive law holds in F: $(a + b) \times c = (a \times c) + (b \times c)$

In The End...

Why should I care about any of this?

Groups, Rings and Fields are examples of the principle of abstraction: the particulars of the objects are abstracted into a few simple properties

All the results carry over to any group

Here's What You Need to Know...

Symmetries of the Square

Compositions

Groups

Binary Operation Identity and Inverses Basic Facts: Inverses Are Unique Generators

Rings and Fields
Definition