

Fibonacci Numbers, Vector
Programs and a new kind of

science

Sequences That Sum To n

Let fn+1 be the number of different
sequences of 1’s and 2’s that sum to n.

Example: f5 = 5

Sequences That Sum To n

Let fn+1 be the number of different
sequences of 1’s and 2’s that sum to n.

Example: f5 = 5

4 = 2 + 2

2 + 1 + 1
1 + 2 + 1
1 + 1 + 2
1 + 1 + 1 + 1

Sequences That Sum To n

f1

f2

f3

Let fn+1 be the number of different
sequences of 1’s and 2’s that sum to n.

Sequences That Sum To n

f1 = 1

 0 = the empty
sum
f2 = 1

 1 = 1

f3 = 2

 2 = 1 + 1

 2

Let fn+1 be the number of different
sequences of 1’s and 2’s that sum to
n.

Sequences That Sum To n

fn+1 = fn + fn-1

Let fn+1 be the number of different
sequences of 1’s and 2’s that sum to
n.

Sequences That Sum To n

fn+1 = fn + fn-1

Let fn+1 be the number of different
sequences of 1’s and 2’s that sum to
n.

of
sequences
beginning
with a 2

of
sequences
beginning
with a 1

Leonardo Fibonacci

In 1202, Fibonacci proposed a
problem about the growth of rabbit
populations.

Rules

1. in the first month there is just one pair
2. new-born pairs become fertile after

their second month
3. each month every fertile pair begets a

new pair, and
4. the rabbits never die

Inductive Definition or
Recurrence Relation for the

Fibonacci Numbers

Stage 0, Initial Condition, or Base Case:
Fib(0) = 0; Fib (1) = 1

Inductive Rule
For n>1, Fib(n) = Fib(n-1) + Fib(n-2)

0

0

13853211Fib(n)

7654321n

Fibonacci Numbers Again

ffn+1n+1 = f = fnn + f + fn-1n-1

ff11 = 1 f = 1 f22 = 1 = 1

Let fn+1 be the number of different
sequences of 1’s and 2’s that sum to

n.

Visual Representation: Tiling

Let fn+1 be the number of different
ways to tile a 1 × n strip with
squares and dominoes.

Visual Representation: Tiling

Let fn+1 be the number of different
ways to tile a 1 × n strip with
squares and dominoes.

Visual Representation: Tiling

1 way to tile a strip of length 0

1 way to tile a strip of length 1:

2 ways to tile a strip of length 2:

fn+1 = fn + fn-1

fn+1 is number of ways to tile length n.

fn tilings that start with a square.

fn-1 tilings that start with a domino.

Let’s use this visual
representation to
prove a couple of

Fibonacci identities.

Fibonacci Identities

Some examples:

F2n = F1 + F3 + F5 + … + F2n-1

Fm+n+1 = Fm+1 Fn+1 + Fm Fn

(Fn)2 = Fn-1 Fn+1 + (-1)n

Fm+n+1 = Fm+1 Fn+1 + Fm Fn

mm nn

m-1m-1 n-1n-1

(Fn)2 = Fn-1 Fn+1 + (-1)n

(Fn)2 = Fn-1 Fn+1 + (-1)n

n-1n-1

Fn tilings of a strip of length n-1

(Fn)2 = Fn-1 Fn+1 + (-1)n

n-1n-1

n-1n-1

(Fn)2 = Fn-1 Fn+1 + (-1)n

nn

(Fn)2 tilings of two strips of size
n-1

(Fn)2 = Fn-1 Fn+1 + (-1)n

nn

Draw a vertical “fault Draw a vertical “fault
line” at the line” at the rightmost rightmost

 position position (<n)(<n)
possible without possible without

cutting any cutting any
dominoes dominoes

(Fn)2 = Fn-1 Fn+1 + (-1)n

nn

Swap the tailsSwap the tails at the at the
fault linefault line to map to a to map to a
tiling of 2 n-1 ‘s to a tiling of 2 n-1 ‘s to a
tiling of an n-2 and an tiling of an n-2 and an
n.n.

(Fn)2 = Fn-1 Fn+1 + (-1)n

nn

Swap the tailsSwap the tails at the at the
fault linefault line to map to a to map to a
tiling of 2 n-1 ‘s to a tiling of 2 n-1 ‘s to a
tiling of an n-2 and an tiling of an n-2 and an
n.n.

(Fn)2 = Fn-1 Fn+1 + (-1)n-1

n n
eveneven

n oddn odd

The Fibonacci Quarterly

Vector Programs

Let’s define a (parallel)
programming language called
VECTOR that operates on possibly
infinite vectors of numbers. Each
variable V! can be thought of as:

< * , * , * , * , *, *, >

 0 1 2 3 4 5

Vector Programs

Let k stand for a scalar constant
<k> will stand for the vector <k,0,0,0,…>

<0> = <0,0,0,0,….>
<1> = <1,0,0,0,…>

V! + T! means to add the vectors position-wise.

<4,2,3,…> + <5,1,1,….> = <9,3,4,…>

Vector Programs

RIGHT(V!) means to shift every number in V!
one position to the right and to place a 0 in
position 0.

RIGHT(<1,2,3, …>) = <0,1,2,3,. …>

Vector Programs

Example:

V! := <6>;
V! := RIGHT(V!) + <42>;
V! := RIGHT(V!) + <2>;
V! := RIGHT(V!) + <13>;

VV!! = < 13, 2, 42, 6, 0, 0, 0, . . . > = < 13, 2, 42, 6, 0, 0, 0, . . . >

Store

V! =
<6,0,0,0,..>
V! =
<42,6,0,0,..>
V! =
<2,42,6,0,..> V!

= <13,2,42,6,.>

Vector Programs

Example:

V! := <1>;

Loop n times:
 V! := V! + RIGHT(V!);

VV!! = n = nthth row of Pascal’s triangle. row of Pascal’s triangle.

Store

V! =
<1,0,0,0,..>

V! =
<1,1,0,0,..>
V! =
<1,2,1,0,..>
V! = <1,3,3,1,.>

 X1 X2 + + X3

Vector programs
can be

implemented by
polynomials!

Programs -----> Polynomials

The vector V! = < a0, a1, a2, . . . >
will be represented by the
polynomial:

Formal Power Series

The vector V! = < a0, a1, a2, . . . > will be
represented by the formal power series:

V! = < a0, a1, a2, . . . >

<0> is represented by 0
<k> is represented by k

RIGHT(V!) is represented by (PV X)

V! + T! is represented by (PV + PT)

Vector Programs

Example:

V! := <1>;

Loop n times:
 V! := V! + RIGHT(V!);

VV!! = n = nthth row of Pascal’s triangle. row of Pascal’s triangle.

PV := 1;

PV := PV + PV X;

Vector Programs

Example:

V! := <1>;

Loop n times:
 V! := V! + RIGHT(V!);

VV!! = n = nthth row of Pascal’s triangle. row of Pascal’s triangle.

PV := 1;

PV := PV (1+ X);

Vector Programs

Example:

V! := <1>;

Loop n times:
 V! := V! + RIGHT(V!);

VV!! = n = nthth row of Pascal’s triangle. row of Pascal’s triangle.

PV = (1+ X)n

Let’s add an instruction
called PREFIXSUM to our

VECTOR language.

W! := PREFIXSUM(V!)

means that the ith position
of W contains the sum of
all the numbers in V from

positions 0 to i.

What does this program output?

V! := 1! ;
Loop k times: V! := PREFIXSUM(V!) ;

k’th Avenue0
1

2
3

4

Al Karaji Perfect SquaresAl Karaji Perfect Squares

Zero_Ave := PREFIXSUM(<1>);
First_Ave := PREFIXSUM(Zero_Ave);
Second_Ave :=PREFIXSUM(First_Ave);

Output:=
RIGHT(Second_Ave) + Second_Ave

Second_Ave = <1, 3, 6, 10, 15,. Second_Ave = <1, 3, 6, 10, 15,.

RIGHT(Second_Ave) = <0, 1, 3, 6, 10,.RIGHT(Second_Ave) = <0, 1, 3, 6, 10,.
Output = <1, 4, 9, 16, 25

Can you see how
PREFIXSUM can be
represented by a

familiar polynomial
expression?

How to divide polynomials?

1 1

1 – X
?

1 – X 1

1

-(1 – X)

X

+ X

-(X – X2)

X2

+ X2

-(X2 – X3)

X3

=1 + X + X2 + X3 + X4 + X5 + X6 + X7 + …

…

 1 + X1 + X11 + X + X22 + X + X33 + … + X + … + Xnn + ….. = + ….. =
 11

1 - X1 - X

The Infinite Geometric Series

W! := PREFIXSUM(V!)

is represented by

PW = PV / (1-X)

 = PV (1+X+X2+X3+

…..)

Al-Karaji Program

Zero_Ave = 1/(1-X);
First_Ave = 1/(1-X)2;
Second_Ave = 1/(1-X)3;

Output =
1/(1-X)3 + X/(1-X)3

= (1+X)/(1-X)= (1+X)/(1-X)33

(1+X)/(1-X)(1+X)/(1-X)33

Zero_Ave := PREFIXSUM(<1>);
First_Ave := PREFIXSUM(Zero_Ave);
Second_Ave :=PREFIXSUM(First_Ave);

Output:=
RIGHT(Second_Ave) + Second_Ave

Second_Ave = <1, 3, 6, 10, 15,. Second_Ave = <1, 3, 6, 10, 15,.

RIGHT(Second_Ave) = <0, 1, 3, 6, 10,.RIGHT(Second_Ave) = <0, 1, 3, 6, 10,.
Output = <1, 4, 9, 16, 25

(1+X)/(1-X)(1+X)/(1-X)3 3
outputs <1, 4, 9, ..>outputs <1, 4, 9, ..>

X(1+X)/(1-X)X(1+X)/(1-X)3 3
outputs <0, 1, 4, 9, ..>outputs <0, 1, 4, 9, ..>

 The kThe kthth entry is k entry is k22

X(1+X)/(1-X)X(1+X)/(1-X)3 3 = = ∑∑ k k22XXkk

What does X(1+X)/(1-X)What does X(1+X)/(1-X)44
do?do?

X(1+X)/(1-X)X(1+X)/(1-X)44 expands to : expands to :

∑∑ SSkk X Xkk

where Swhere Skk is the sum of the is the sum of the
first k squaresfirst k squares

Aha! Thus, if there is an Aha! Thus, if there is an
alternative interpretation of alternative interpretation of

the kthe kthth coefficient of coefficient of
X(1+X)/(1-X)X(1+X)/(1-X)44

we would have a new way we would have a new way
to get a formula for the sum to get a formula for the sum

of the first k squares.of the first k squares.

What is the coefficient of
Xk in the expansion of:

(1 + X + X2 + X3 + X4

+)n ?

Each path in the choice tree for the
cross terms has n choices of
exponent e1, e2, . . . , en ¸ 0. Each
exponent can be any natural
number.

Coefficient of Xk is the number of
non-negative solutions to:

e1 + e2 + . . . + en = k

What is the coefficient of
Xk in the expansion of:

(1 + X + X2 + X3 + X4

+)n ?

n
n ­1
+ −��

��
��

1k

(1 + X + X2 + X3 + X4

+)n =

()
k

k 0

n
X

n ­1

�

=

+ −��
= ��− ��

�
11

1
n

k

X

Using pirates and gold we
found that:

()
k

k 0

n
X

n ­1

�

=

+ −��
= ��− ��

�
11

1
n

k

X

()
k

k 0
X

3

�

=

+��
= ��

− ��
�4

31

1

k

X

THUS:

Vector programs -> Polynomials
-> Closed form expression

A big jump

Let’s jump into the world of simple
programs

Cellular automata

The main discovery

A simple program can create
complex output

4 kinds of behavior

Why these discoveries were not
made before?

New
technologies!

A hypothesis

Cellular automata are an exception!

Other simple programs

3 colors

Being mobile

Not parallel!

Mobile Automata

Turing machines

Other

First conclusions

Phenomena of Complexity can be found
in a variety of simple programs!

Systems based on Numbers

But…

A hypothesis

This is all because of the
representation in base 2!

Primes

Pi

Functions

Functions

Conclusion

Other systems can exhibit the same
behavior as cellular automatas

Chaos phenomena

Start with 1/2

Start with random value

Tiny perturbations of the input

Can (d) create randomness?

No! Random
input can lead to
random output

But (a) and (b)
can!

Continuous

Conclusion

Same results in continuous and
discrete

First discovered in
discrete because

easier to
investigate

Continuous is like
average of discrete

Dimensions

Constraints

Every cell must have a black and
white neighbor

Constraints

Only complicated constraints yield
complicated output! Constraint=Equatio

n

Traditional science
concentrates on

equations!

A hypothesis

Starting from randomness no order
can emerge

Conclusion

Order can emerge from randomness

Four classes of behavior

Sources of randomness

New!

Is this useful?

Snow flakes

Growth of plants

Computation

Is there a universal cellular
automata?

Yes!

Take home message

Thinking in terms of programs
instead of equations can lead to new
insights

A simple program could produce all
the complexity we see.

…Go and find it!

REFERENCES

Coxeter, H. S. M. ``The Golden Section,
Phyllotaxis, and Wythoff's Game.'' Scripta
Mathematica 19, 135-143, 1953.

"Recounting Fibonacci and Lucas Identities" by
Arthur T. Benjamin and Jennifer J. Quinn, College
Mathematics Journal, Vol. 30(5): 359--366, 1999.

Stephen Wolfram, “A New Kind of Science”, 2002

