Fibonacci Numbers, Vector
Programs and a new kind of
sclence



Seguences That Sum To n

Let f ., be the number of different
sequences of 1's and 2’s that sum to n.

Example: f, =5
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2+1+1
1+2+1
1+1+2
1+1+1+1



Seguences That Sum To n

Let f_,, be the number of different
sequences of 1's and 2’s that sum to n.

1 f,



Seguences That Sum To n

Let f_,, be the number of different

sequences of 1's and 2’s that sum to
n.

f1=1 f3=2

O = the empty 2 =1+1
sum

f,=1 2

1=1



Seguences That Sum To n

Let f_,, be the number of different

sequences of 1's and 2’s that sum to
n.
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Seguences That Sum To n

Let f_,, be the number of different

sequences of 1’s and 2’s that sum to
n.

foo=f +f

Nn+1

seguences
beginning
with a 2

seguences

beginning
with a 1




Leonardo Fibonacci

In 1202, Fibonacci proposed a
problem about the growth of rabbit

pfqﬂations.




UIES

in the first month there is just one pair

new-born pairs become fertile after
their second month

each month every fertile pair begets a
new pair, and

. the rabbits never die



Inductive Definition or
Recurrence Relation for the
Fibonacci Numbers

Stage O, Initial Condition, or Base Case:
Fib(0) = 0; Fib (1) =1

Inductive Rule
For n>1, Fib(n) = Fib(n-1) + Fib(n-2)

n 0 1 2 3 4 5 6

Fib(n) 0 1 1 P 3 5 8

13




Fibonacci Numbers Again

Let f_,, be the number of different

sequences of 1's and 2’s that sum to
n.

1’:n+1 — 1:n T 1’:n-l

ff=1 f,=1



Visual Representation: Tiling

Let f_,, be the number of different

ways to tile a 1 x n strip with
squares and dominoes.




Visual Representation: Tiling

Let f_,, be the number of different

ways to tile a 1 x n strip with
squares and dominoes.




Visual Representation: Tiling

1 way to tile a strip of length O

1 way to tile a strip of length 1:

2 ways to tile a strip of length 2:




f.,=1 +71

f ., 1S number of ways to tile length n.

- f tilings that start with a square.

- f , tilings that start with a domino.




\

Let’s use this visual
representation to
prove a couple of

Fibonacci identities.

N /




Fibonacci ldentities

Some examples:
F,.=F, +F +F +...+F,,

= I:m+1 I:n+1 +F, F

m+n+1 e

(Fn)2 = Fn-l I:n+1 + (_1)n



m+n+1




(F,)?

F . F

NnN+1

(-1)"



(Fn)2 — I:n-l I:n+1 T (_1)n
n-1
/_/%

I

F_tilings of a strip of length n-1



(F)? = F Fop + (1)



(F)? tilings of two strips of size
n-1



(Fn)z Fn-l I:n+1 T (_1)n

N

/_/%

Draw a vertical “fault
line” at the rightmost
position (<n)
possible without
cuttlng any




Fn-l I:n+1 + (_1)n

(F,)?

N

/_/%

Swap the tails at the
fault line to map to a
tiling of 2 n-1 ‘sto a
tiling of an n-2 and an
n.




Swap the tails at the
fault line to map to a
tiling of 2 n-1 ‘sto a
tiling of an n-2 and an
n.







The Fibonacci Quarterly




Vector Programs

Let’s define a (parallel)
programming language called
VECTOR that operates on possibly
infinite vectors of numbers. Each
variable V' can be thought of as:



Vector Programs

Let k stand for a scalar constant
<k> will stand for the vector <k,0,0,0,...>

<0> = <0,0,0,0,....>
<l> =<1,0,0,0,...>

V'* T' means to add the vectors position-wise.

<4,2,3,..>+<51,1,...>=<9,3,4,..>



Vector Programs

RIGHT(V') means to shift every number in V'
one position to the right and to place a 0 In
position O.

RIGHT( <1,2,3, ...> ) =<0,1,2,3,. ...>



Vector Programs

Example: Store
Vii= <6>; V! =

V' := RIGHT(V") + <42>;<6,0,0,0,..>
V! := RIGHT(V!) + <2>; V' =

V! := RIGHT(V!) + <13>:<42,6,0,0,..>

V! =

V!=<13, 2,42, 6, 54948,6,0,.> V'
= <13,2,42,6,.>



Vector Programs

Example: Store
V= <1>; \VAR—
<1,0,0,0,..>

Loop n times:

V! :=V'+ RIGHT(V"); Vi =
<1,1,0,0,..>

V! =
V! = nt" row of Pascaliotrigngle.

\/! — 7 D 2D T






Programs ----- > Polynomials

The vectorV! =< a, a;, a,, ...>

will be represented by the
pol\lnnr\nlnl

PV — Z a,,Z‘XIZ
1=0



Formal Power Series

The vector V! = < a,, a,, a,, . . . > will be
represented by the formal power series:

1=—=—0C |
PV — Z CI,Z:XIZ
=10



<0> is represented by
<k> iIs represented by

~ O

V! + T' is represented by (P, + P.)

RIGHT(V') Is represented by (P, X)



Vector Programs

Example:
Vii= <1>; Py =1,

Loop n times:
V' := V' + RIGHT(V'); P,:=P, + P, X;

V' = nth row of Pascal’s triangle.



Vector Programs

Example:
Vii= <1>; Py =1,

Loop n times:
V' := V' + RIGHT(V!); P, := P, (1+ X);

V' = nth row of Pascal’s triangle.



Vector Programs

Example:
V= <1>; ™
Loop n times: — Py, = (1+ X)"

V! i= V' + RIGHT(V);
_

V' = nth row of Pascal’s triangle.



ﬂet’s add an instructioﬁ

called PREFIXSUM to our
VECTOR language.

W' := PREFIXSUM(V*)

means that the it position
of W contains the sum of
all the numbers in V from

positions O to |. /




What does this program output?

Vii= 1
Loop k times: V' := PREFIXSUM(V") ;

0 1k’th Avenue
2
3
4



Al Karaji Perfect Squares

Zero Ave := PREFIXSUM(<1>);
First Ave := PREFIXSUM(Zero_ Ave);
Second_Ave :=PREFIXSUM(First_Ave);

Output:=
RIGHT(Second Ave) + Second Ave
Second Ave = <1, 3,6, 10, 15

RIGHT(Second Ave) =<0, 1, 3, 6, 10,.
Output = <1,4,9, 16, 25



- ™

Can you see how
PREFIXSUM can be
» represented by a
) familiar polynomial
" expression?

i




How to divide polynomials?

1 0 1+ X + X?

1 - X 1-x[1

-(1 - X)

X
-(X - X?)

X2
-(X2 - X3)

X3

=1+ X+ X2+ X3+ X+ X+ X0+ X7+ ...



1+ X+ X2+ X3+ ...+ X0+ ...,

€

The Infinite Geometric Series




/7 W!:= PREFIXSUM(V!)

IS represented by

Py = P,/ (1-X)
= P, (1+x+x24+x3+




Al-Karaji Program

Zero Ave = 1/(1-X);
First Ave = 1/(1-X)2;
Second Ave = 1/(1-X)3;

Output =
1/(1-X)3 + X/(1-X)3

= (14+X)/(1-X)3



(1+X)/(1-X)3

Zero Ave := PREFIXSUM(<1>);
First Ave := PREFIXSUM(Zero_ Ave);
Second_Ave :=PREFIXSUM(First_Ave);

Output:=
RIGHT(Second Ave) + Second Ave
Second Ave = <1, 3,6, 10, 15

RIGHT(Second Ave) =<0, 1, 3, 6, 10,.
Output = <1,4,9, 16, 25



(1+X)/(1-X)3
outputs <1, 4, 9, ..>

X(1+X)/(1-X)3
outputs <0, 1, 4, 9, ..>

The kth entry Is k?



X(1+X)/(1-X)3 =5 k2XX

What does X(1+X)/(1-X)4
do?



X(1+X)/(1-X)* expands to :

2 S K-

where S, Is the sum of the
first k squares



Aha! Thus, If there is an
alternative interpretation of
the k™ coefficient of
X(1+X)/(1-X)*
we would have a new way
to get a formula for the sum
of the first k squares.



/What Is the coefficient of\
XX 1n the expansion of:

»
L4

%

(1 4+ X+ X2+ X3+ X4

%...)n? g

Each path in the choice tree for the
cross terms has n choices of
exponente,, e,, ..., e, , 0. Each
exponent can be any natural
number.

Coefficient of Xk is the number of
non-negative solutions to:
e,+e,+...+e =Kk




/What Is the coefficient of\
XX 1n the expansion of:

»
L4

%

(1 4+ X+ X2+ X3+ X4

%...)n? g
n+k-1

n-1




/

-
+
X
+
X2t X
3 +
X4

N L=

1
n+Kk
-1

[1-

X)"
k=0
n
-1

\

Xk

g




Using pirates and gold WR
found that:

p
4

b

* 1 — n+k_1Xk

k=0 -1




Vector programs -> Polynomials
-> Closed form expression




A big jump

Let's jump into the world of simple
programs



Cellular automata
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The main discovery

A simple program can create
complex output



4 kinds of behavior
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Why these discoveries were not
made before?




A hypothesis

Cellular automata are an exception!



Other simple programs



3 colors




Being mobile
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Mobile Automata
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Turing machines










First conclusions

Phenomena of Complexity can be found
in a variety of simple programs!



Systems based on Numbers
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But...







A hypothesis

This Is all because of the
representation in base 2!



B

i a|| N |’i |f'1.,l A bl

f"'|| I|' BN

fb||
ERUNS
“hl I'.JJ |I !I * W




Primes
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Functions




Functions
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Conclusion

Other systems can exhibit the same
behavior as cellular automatas



Chaos phenomena



Start with 1/2




Start with random value
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Tiny perturbations of the input
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Can (d) create randomness?

No! Random
input can lead to
random output

But (a) and (b)
can!




Continuous




Conclusion

Same results in continuous and
discrete

First discovered in
discrete because
easier to

inkestigate

—
Continuous is like
average of discrete




Dimensions













Constraints

Every cell must have a black and
white neighbor









Constraints

Only complicated constraints yield

complicated output!

Traditional science
concentrates on
equations!




A hypothesis

Starting from randomness no order
can emerge
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Conclusion

Order can emerge from randomness



Four classes of behavior




Sources of randomness

............




Is this useful?



Snow flakes
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Computation




s there a universal cellular
automata?

Yes!



i e =
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Take home message

Thinking in terms of programs
iInstead of equations can lead to new
Insights

A simple program could produce all
the complexity we see.



...Go and find it!
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