
  

Fibonacci Numbers, Vector 
Programs and a new kind of 

science



  

Sequences That Sum To n

Let fn+1 be the number of different 
sequences of 1’s and 2’s that sum to n.

Example: f5 = 5



  

Sequences That Sum To n

Let fn+1 be the number of different 
sequences of 1’s and 2’s that sum to n.

Example: f5 = 5

4 = 2 + 2

2 + 1 + 1
1 + 2 + 1
1 + 1 + 2
1 + 1 + 1 + 1



  

Sequences That Sum To n

f1

f2

f3

Let fn+1 be the number of different 
sequences of 1’s and 2’s that sum to n.



  

Sequences That Sum To n

f1 = 1

  0 = the empty 
sum
f2 = 1

  1 = 1

f3 = 2

  2 = 1 + 1

        2

Let fn+1 be the number of different 
sequences of 1’s and 2’s that sum to 
n.



  

Sequences That Sum To n

fn+1 = fn + fn-1

Let fn+1 be the number of different 
sequences of 1’s and 2’s that sum to 
n.



  

Sequences That Sum To n

fn+1 = fn + fn-1

Let fn+1 be the number of different 
sequences of 1’s and 2’s that sum to 
n.

# of 
sequences 
beginning 
with a 2

# of 
sequences 
beginning 
with a 1



  

Leonardo Fibonacci

In 1202, Fibonacci proposed a 
problem about the growth of rabbit 
populations.



  

Rules

1. in the first month there is just one pair
2. new-born pairs become fertile after 

their second month 
3. each month every fertile pair begets a 

new pair, and 
4. the rabbits never die 



  

Inductive Definition or  
Recurrence Relation for the

Fibonacci Numbers
 
Stage 0, Initial Condition, or Base Case:
Fib(0) = 0; Fib (1) = 1

Inductive Rule
For n>1, Fib(n) = Fib(n-1) + Fib(n-2)

0

0

13853211Fib(n)

7654321n



  

Fibonacci Numbers Again

ffn+1n+1 = f = fnn + f + fn-1n-1

ff11 = 1      f = 1      f22 = 1 = 1

Let fn+1 be the number of different 
sequences of 1’s and 2’s that sum to 

n.



  

Visual Representation: Tiling

Let fn+1 be the number of different 
ways to tile a 1 × n strip with 
squares and dominoes.



  

Visual Representation: Tiling

Let fn+1 be the number of different 
ways to tile a 1 × n strip with 
squares and dominoes.



  

Visual Representation: Tiling

1 way to tile a strip of length 0

1 way to tile a strip of length 1:

2 ways  to tile a strip of length 2:



  

fn+1 = fn + fn-1

fn+1 is number of ways to tile length n.

fn tilings that start with a square.

fn-1 tilings that start with a domino.



  

Let’s use this visual 
representation to 
prove a couple of 

Fibonacci identities.



  

Fibonacci Identities

Some examples:

F2n = F1 + F3 + F5 + … + F2n-1

Fm+n+1 = Fm+1 Fn+1 + Fm Fn

(Fn)2    =  Fn-1 Fn+1 + (-1)n



  

Fm+n+1      =  Fm+1 Fn+1     +     Fm Fn

mm nn

m-1m-1 n-1n-1



  

(Fn)2    =  Fn-1 Fn+1     +     (-1)n



  

(Fn)2    =  Fn-1 Fn+1     +     (-1)n

n-1n-1

Fn tilings of a strip of length n-1 



  

(Fn)2    =  Fn-1 Fn+1     +     (-1)n

n-1n-1

n-1n-1



  

(Fn)2    =  Fn-1 Fn+1     +     (-1)n

nn

(Fn)2 tilings of two strips of size 
n-1 



  

(Fn)2    =  Fn-1 Fn+1     +     (-1)n

nn

Draw a vertical “fault Draw a vertical “fault 
line” at the line” at the rightmost rightmost 

 position  position (<n)(<n)
possible  without possible  without 

cutting any cutting any 
dominoes dominoes 



  

(Fn)2    =  Fn-1 Fn+1     +     (-1)n

nn

Swap the tailsSwap the tails at the  at the 
fault linefault line to map to a  to map to a 
tiling of 2 n-1 ‘s to a tiling of 2 n-1 ‘s to a 
tiling of an n-2 and an tiling of an n-2 and an 
n.n.



  

(Fn)2    =  Fn-1 Fn+1     +     (-1)n

nn

Swap the tailsSwap the tails at the  at the 
fault linefault line to map to a  to map to a 
tiling of 2 n-1 ‘s to a tiling of 2 n-1 ‘s to a 
tiling of an n-2 and an tiling of an n-2 and an 
n.n.



  

(Fn)2    =  Fn-1 Fn+1     +     (-1)n-1

n n 
eveneven

n oddn odd



  

The Fibonacci Quarterly



  

Vector Programs

Let’s define a (parallel) 
programming language called 
VECTOR that operates on possibly 
infinite vectors of numbers. Each 
variable V! can be thought of as:

<  * , * , * , * , *, *, . . . . . . . . . >

   0   1    2  3  4  5 . . . . . . . . . 



  

Vector Programs

Let k stand for a scalar constant
<k> will stand for the vector <k,0,0,0,…>

<0> = <0,0,0,0,….>
<1>  = <1,0,0,0,…>

V! + T! means to add the vectors position-wise. 

<4,2,3,…> + <5,1,1,….> = <9,3,4,…>



  

Vector Programs

RIGHT(V!) means to shift every number in V! 
one position to the right and to place a 0 in 
position 0.

RIGHT( <1,2,3, …> ) = <0,1,2,3,. …>



  

Vector Programs

Example:

V! := <6>;
V! := RIGHT(V!) + <42>;
V!  := RIGHT(V!) + <2>;
V! := RIGHT(V!) + <13>;

VV!! = < 13, 2, 42, 6, 0, 0, 0, . . . > = < 13, 2, 42, 6, 0, 0, 0, . . . >

Store

V! = 
<6,0,0,0,..>
V! = 
<42,6,0,0,..>
V! = 
<2,42,6,0,..> V!

= <13,2,42,6,.>



  

Vector Programs

Example:

V! := <1>;

Loop n times:
 V! := V! + RIGHT(V!);

VV!! = n = nthth row of Pascal’s triangle. row of Pascal’s triangle.

Store

V! = 
<1,0,0,0,..>

V! = 
<1,1,0,0,..>
V! = 
<1,2,1,0,..> 
V!  = <1,3,3,1,.>



  

 X1  X2 +  +  X3

Vector programs 
can be 

implemented by 
polynomials!



  

Programs -----> Polynomials

The vector V! = < a0, a1, a2, . . . > 
will be represented by the 
polynomial:



  

Formal Power Series

The vector V! = < a0, a1, a2, . . . > will be 
represented by the formal power series:



  

V! = < a0, a1, a2, . . . >

<0> is represented by 0
<k> is represented by k

RIGHT(V! ) is represented by (PV X)

V! + T!  is represented by      (PV + PT)



  

Vector Programs

Example:

V! := <1>;

Loop n times:
 V! := V! + RIGHT(V!);

VV!! = n = nthth row of Pascal’s triangle. row of Pascal’s triangle.

PV := 1;

PV := PV + PV X;



  

Vector Programs

Example:

V! := <1>;

Loop n times:
 V! := V! + RIGHT(V!);

VV!! = n = nthth row of Pascal’s triangle. row of Pascal’s triangle.

PV := 1;

PV := PV (1+ X);



  

Vector Programs

Example:

V! := <1>;

Loop n times:
 V! := V! + RIGHT(V!);

VV!! = n = nthth row of Pascal’s triangle. row of Pascal’s triangle.

PV = (1+ X)n



  

Let’s  add an instruction 
called PREFIXSUM to our 

VECTOR language.

W! := PREFIXSUM(V!) 

means that the ith position 
of W contains the sum of 
all the numbers in V from 

positions 0 to i. 



  

What does this program output?

V! := 1! ;
Loop k times: V! := PREFIXSUM(V!) ; 

k’th Avenue0
1

2
3

4



  

Al Karaji Perfect SquaresAl Karaji Perfect Squares

Zero_Ave    := PREFIXSUM(<1>);
First_Ave    := PREFIXSUM(Zero_Ave);
Second_Ave :=PREFIXSUM(First_Ave);

Output:= 
RIGHT(Second_Ave) + Second_Ave

Second_Ave               =  <1, 3, 6, 10, 15,. Second_Ave               =  <1, 3, 6, 10, 15,. 

RIGHT(Second_Ave)  = <0, 1, 3,  6,  10,.RIGHT(Second_Ave)  = <0, 1, 3,  6,  10,.
Output                            =  <1, 4, 9,  16,  25       



  

Can you see how 
PREFIXSUM can be 
represented by a 

familiar polynomial 
expression? 



  

How to divide polynomials?

1 1 
      
   

1 – X
?

1 – X 1

1

-(1 – X)

X

+ X

-(X – X2)

X2

+ X2

-(X2 – X3)

X3

=1 + X + X2  + X3 + X4 + X5 + X6 + X7 + … 

…



  

  1 + X1 + X11 + X + X22 + X + X33 + … + X + … + Xnn + …..  = + …..  =  
      11 

1 - X1 - X 

The Infinite Geometric Series



  

W! := PREFIXSUM(V!)

is represented by

PW = PV / (1-X)

    =  PV (1+X+X2+X3+ 

….. )



  

Al-Karaji Program

Zero_Ave    =  1/(1-X);
First_Ave    =  1/(1-X)2;
Second_Ave = 1/(1-X)3;

Output = 
1/(1-X)3 + X/(1-X)3

= (1+X)/(1-X)= (1+X)/(1-X)33



  

(1+X)/(1-X)(1+X)/(1-X)33

Zero_Ave    := PREFIXSUM(<1>);
First_Ave    := PREFIXSUM(Zero_Ave);
Second_Ave :=PREFIXSUM(First_Ave);

Output:= 
RIGHT(Second_Ave) + Second_Ave

Second_Ave               =  <1, 3, 6, 10, 15,. Second_Ave               =  <1, 3, 6, 10, 15,. 

RIGHT(Second_Ave)  = <0, 1, 3,  6,  10,.RIGHT(Second_Ave)  = <0, 1, 3,  6,  10,.
Output                            =  <1, 4, 9,  16,  25       



  

(1+X)/(1-X)(1+X)/(1-X)3 3   
outputs <1, 4, 9, ..>outputs <1, 4, 9, ..>

X(1+X)/(1-X)X(1+X)/(1-X)3 3   
outputs <0, 1, 4, 9, ..>outputs <0, 1, 4, 9, ..>

      The kThe kthth entry is k entry is k22



  

X(1+X)/(1-X)X(1+X)/(1-X)3 3 = = ∑∑  k  k22XXkk

What does X(1+X)/(1-X)What does X(1+X)/(1-X)44  
do?do?



  

X(1+X)/(1-X)X(1+X)/(1-X)44 expands to : expands to :

∑∑  SSkk X Xkk

where Swhere Skk is the sum of the  is the sum of the 
first k squaresfirst k squares



  

Aha! Thus, if there is an Aha! Thus, if there is an 
alternative interpretation of alternative interpretation of 

the kthe kthth coefficient of    coefficient of   
X(1+X)/(1-X)X(1+X)/(1-X)44

we would have a new way we would have a new way 
to get a formula for the sum to get a formula for the sum 

of the first k squares.of the first k squares.



  

What is the coefficient of 
Xk in the expansion of:

( 1 + X + X2 + X3 + X4 

+ . . . . )n ?

Each path in the choice tree for the 
cross terms has n choices of 
exponent e1, e2, . . . , en ¸ 0. Each 
exponent can be any natural 
number.

Coefficient of Xk is the number of 
non-negative solutions to: 

e1 + e2 + . . . + en = k



  

What is the coefficient of 
Xk in the expansion of:

( 1 + X + X2 + X3 + X4 

+ . . . . )n ?

n
n ­1
+ −��

��
��

1k



  

( 1 + X + X2 + X3 + X4 

+ . . . . )n =

( )
k

k 0

n
X

n ­1

�

=

+ −��
= ��− ��

�
11

1
n

k

X



  

Using pirates and gold we 
found that:

( )
k

k 0

n
X

n ­1

�

=

+ −��
= ��− ��

�
11

1
n

k

X

( )
k

k 0
X

3

�

=

+��
= ��

− ��
�4

31

1

k

X

THUS:



  

Vector programs -> Polynomials
-> Closed form expression



  

A big jump

Let’s jump into the world of simple 
programs



  

Cellular automata



  



  

The main discovery

A simple program can create 
complex output



  

4 kinds of behavior



  

Why these discoveries were not 
made before?

New 
technologies!



  

A hypothesis

Cellular automata are an exception!



  

Other simple programs



  

3 colors



  

Being mobile

Not parallel!



  

Mobile Automata



  



  

Turing machines



  



  

Other



  

First conclusions

Phenomena of Complexity can be found 
in a variety of simple programs!



  

Systems based on Numbers



  

But…



  



  

A hypothesis

This is all because of the 
representation in base 2!



  



  

Primes



  

Pi



  

Functions



  

Functions



  

Conclusion

Other systems can exhibit the same 
behavior as cellular automatas



  

Chaos phenomena



  

Start with 1/2



  

Start with random value



  

Tiny perturbations of the input



  

Can (d) create randomness?

No! Random 
input can lead to 
random output

But (a) and (b) 
can!



  

Continuous



  

Conclusion

Same results in continuous and 
discrete

First discovered in 
discrete because 

easier to 
investigate

Continuous is like 
average of discrete



  

Dimensions



  



  



  



  

Constraints

Every cell must have a black and 
white neighbor



  



  



  

Constraints

Only complicated constraints yield 
complicated output! Constraint=Equatio

n

Traditional science 
concentrates on 

equations!



  

A hypothesis

Starting from randomness no order 
can emerge



  



  

Conclusion

Order can emerge from randomness



  

Four classes of behavior



  

Sources of randomness

New!



  

Is this useful?



  

Snow flakes



  

Growth of plants



  

Computation



  

Is there a universal cellular 
automata?

Yes!



  



  

Take home message

Thinking in terms of programs 
instead of equations can lead to new 
insights

A simple program could produce all 
the complexity we see.



  

…Go and find it!
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