Some

Great Theoretical Ideas
in Computer Science
for

"My friends keep asking me what 251 is like. I link them to this video: http://youtube.com/watch?v=M275PjvwRII"

Probability Refresher

What's a Random Variable?

A Random Variable is a real-valued function on a sample space S

E[X+Y] = E[X] + E[Y]

Probability Refresher

What does this mean: E[X | A]?

Is this true:

 $Pr[A] = Pr[A|B]Pr[B] + Pr[A|\overline{B}]Pr[\overline{B}]$

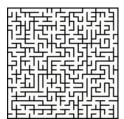
Yes!

Similarly:

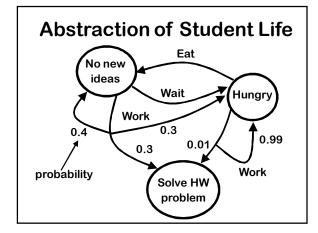
 $E[X] = E[X|A]Pr[A] + E[X|\overline{A}]Pr[\overline{A}]$

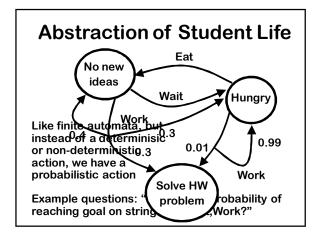
Random Walks

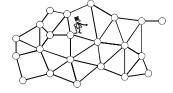
Lecture 13 (February 26, 2008)



How to walk home drunk







At any node, go to one of the neighbors of the node with equal probability

Simpler: Random Walks on Graphs



At any node, go to one of the neighbors of the node with equal probability

Simpler: Random Walks on Graphs



At any node, go to one of the neighbors of the node with equal probability

Simpler: Random Walks on Graphs

At any node, go to one of the neighbors of the node with equal probability

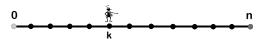
Simpler: Random Walks on Graphs

At any node, go to one of the neighbors of the node with equal probability

Random Walk on a Line

You go into a casino with \$k, and at each time step, you bet \$1 on a fair game

You leave when you are broke or have \$n



Question 1: what is your expected amount of money at time t?

Let X_t be a R.V. for the amount of \$\$\$ at time t

Random Walk on a Line

You go into a casino with \$k, and at each time step, you bet \$1 on a fair game

You leave when you are broke or have \$n

 $X_t = k + \delta_1 + \delta_2 + ... + \delta_t$

(δ_i is RV for change in your money at time i)

 $E[\delta_i] = 0$

So, $E[X_t] = k$

Random Walk on a Line

You go into a casino with \$k, and at each time step, you bet \$1 on a fair game

You leave when you are broke or have \$n

Question 2: what is the probability that you leave with \$n?

Random Walk on a Line

Question 2: what is the probability that you leave with \$n?

 $E[X_t] = k$

 $E[X_t] = E[X_t | X_t = 0] \times Pr(X_t = 0)$

+ $E[X_t | X_t = n] \times Pr(X_t = n)$

+ E[X_t | neither] × Pr(neither)

 $k = n \times Pr(X_t = n)$

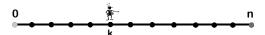
+ (something_t) × Pr(neither)

As $t \to \infty$, Pr(neither) $\to 0$, also something_t < n Hence Pr(X_t = n) \to k/n

Another Way To Look At It

You go into a casino with \$k, and at each time step, you bet \$1 on a fair game

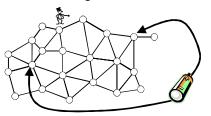
You leave when you are broke or have \$n



Question 2: what is the probability that you leave with \$n?

= probability that I hit green before I hit red

What is chance I reach green before red?



Same as voltage if edges are resistors and we put 1-volt battery between green and red

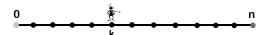
Random Walks and Electrical Networks

And for the rest $p_x = Average_y = Nor(x)(p_y)$ Same as equations for voltage if edges all have same resistance!

Another Way To Look At It

You go into a casino with \$k, and at each time step, you bet \$1 on a fair game

You leave when you are broke or have \$n

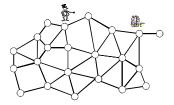


Question 2: what is the probability that you leave with \$n?

voltage(k) = k/n

= Pr[hitting n before 0 starting at k] !!!

Getting Back Home



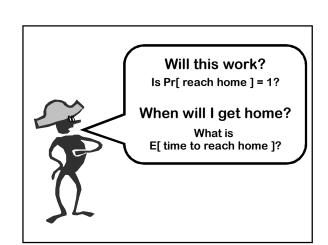
Lost in a city, you want to get back to your hotel How should you do this?

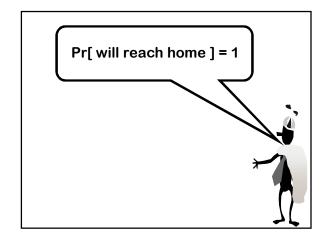
Depth First Search!

Requires a good memory and a piece of chalk

Getting Back Home

How about walking randomly?





We Will Eventually Get Home

Look at the first n steps

There is a non-zero chance p₁ that we get home

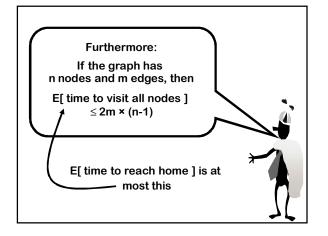
Also, $p_1 \ge (1/n)^n$

Suppose we fail

Then, wherever we are, there is a chance p₂ \geq (1/n)ⁿ that we hit home in the next n steps from there

Probability of failing to reach home by time kn

=
$$(1-p_1)(1-p_2)$$
 ... $(1-p_k) \rightarrow 0$ as $k \rightarrow \infty$



Cover Times

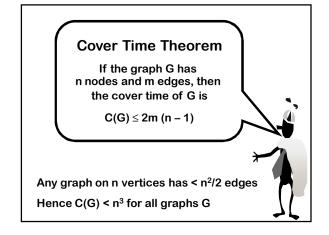
Cover time (from u)

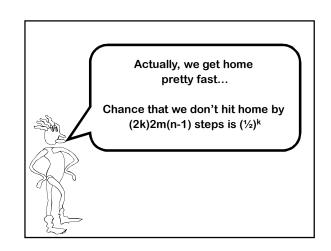
C_u = E [time to visit all vertices | start at u]

Cover time of the graph

 $C(G) = max_u \{ C_u \}$

(worst case expected time to see all vertices)





A Simple Calculation

True of False:

If the average income of people is \$100 then more than 50% of the people can be earning more than \$200 each

False! else the average would be higher!!!

Markov's Inequality

If X is a non-negative r.v. with mean E[X], then

 $Pr[X > 2 E[X]] \le \frac{1}{2}$

 $Pr[\;X>k\;E[X]\;]\;\leq\;1/k$

Andrei A Markov

Markov's Inequality

Non-neg random variable X has expectation A = E[X]

 $A = E[X] = E[X | X > 2A] Pr[X > 2A] + E[X | X \le 2A] Pr[X \le 2A]$

 \geq E[X | X > 2A] Pr[X > 2A] (since X is non-neg)

Also, $E[X \mid X > 2A] > 2A$

 \Rightarrow A \geq 2A × Pr[X > 2A]

 $\Rightarrow \frac{1}{2} \ge \Pr[X > 2A]$

 $Pr[X > k \times expectation] \le 1/k$

An Averaging Argument

Suppose I start at u

E[time to hit all vertices | start at $u \ge C(G)$

Hence, by Markov's Inequality:

Pr[time to hit all vertices > 2C(G) | start at u] $\leq \frac{1}{2}$

So Let's Walk Some Mo!

Pr [time to hit all vertices > 2C(G) | start at u] $\leq \frac{1}{2}$

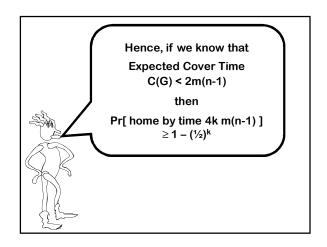
Suppose at time 2C(G), I'm at some node with more nodes still to visit

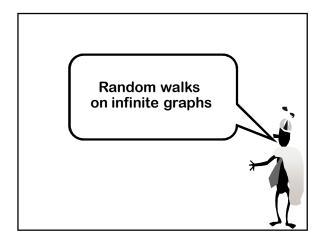
Pr [haven't hit all vertices in 2C(G) <u>more</u> time |start at v] $\leq \frac{1}{2}$

Chance that you failed both times $\leq \frac{1}{4} = (\frac{1}{2})^2$

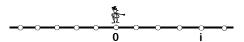
Hence,

Pr[havent hit everyone in time $k \times 2C(G)$] $\leq (\frac{1}{2})^k$





Random Walk On a Line



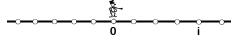
Flip an unbiased coin and go left/right Let X_t be the position at time t

$$Pr[X_t = i] = Pr[\#heads - \#tails = i]$$

$$= Pr[\#heads - (t - \#heads) = i]$$

$$= \begin{bmatrix} t \\ (t+i)/2 \end{bmatrix} / 2^t$$

Random Walk On a Line

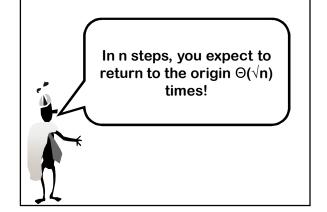


$$\Pr[X_{2t} = 0] = \begin{bmatrix} 2t \\ t \end{bmatrix} / 2^{2t} \le \Theta(1/\sqrt{t})$$
 Sterling's approx

 Y_{2t} = indicator for (X_{2t} = 0) \Rightarrow E[Y_{2t}] = $\Theta(1/\sqrt{t})$

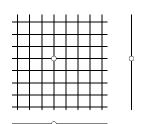
 Z_{2n} = number of visits to origin in 2n steps

$$\begin{aligned} \mathsf{E}[\ \mathsf{Z}_{2n}\] &= \mathsf{E}[\ \textstyle \sum_{t=1...n} \mathsf{Y}_{2t}\] \\ &\leq \Theta(1/\sqrt{1} + 1/\sqrt{2} + ... + 1/\sqrt{n}) \ \ = \Theta(\sqrt{n}) \end{aligned}$$



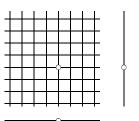
How About a 2-d Grid?

Let us simplify our 2-d random walk: move in both the x-direction and y-direction...



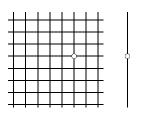
How About a 2-d Grid?

Let us simplify our 2-d random walk: move in both the x-direction and y-direction...



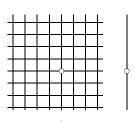
How About a 2-d Grid?

Let us simplify our 2-d random walk: move in both the x-direction and y-direction...



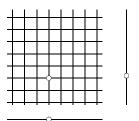
How About a 2-d Grid?

Let us simplify our 2-d random walk: move in both the x-direction and y-direction...



How About a 2-d Grid?

Let us simplify our 2-d random walk: move in both the x-direction and y-direction...



In The 2-d Walk

Returning to the origin in the grid ⇔ both "line" random walks return to their origins

Pr[visit origin at time t] = $\Theta(1/\sqrt{t}) \times \Theta(1/\sqrt{t})$ = $\Theta(1/t)$

E[# of visits to origin by time n] = $\Theta(1/1 + 1/2 + 1/3 + ... + 1/n) = \Theta(\log n)$

But In 3D

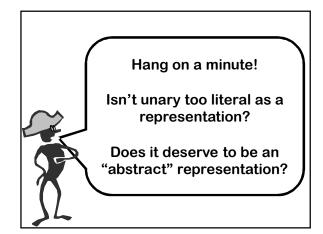
Pr[visit origin at time t] = $\Theta(1/\sqrt{t})^3 = \Theta(1/t^{3/2})$ $\lim_{n\to\infty} E[$ # of visits by time n] < K (constant) Hence Pr[never return to origin] > 1/K Drunk man will find way home, but drunk bird may get lost forever

- Shizuo Kakutani

Dot Proofs

Prehistoric Unary

- 2
- \cdot
- 3
- 4

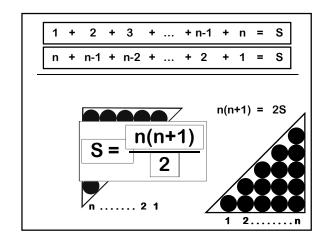


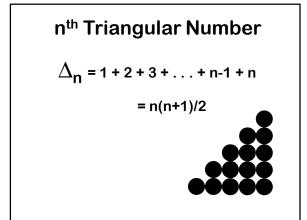
It's important to respect each representation, no matter how primitive

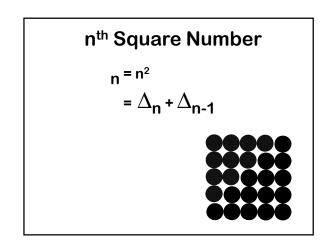
Unary is a perfect example

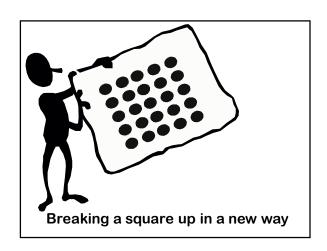
Consider the problem of finding a formula for the sum of the first n numbers

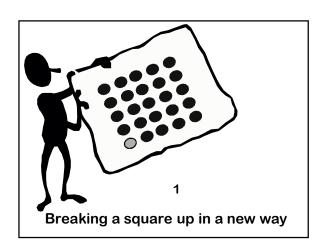
You already used induction to verify that the answer is ½n(n+1)

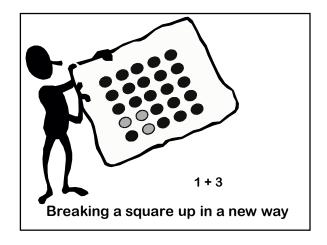


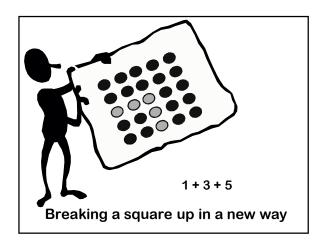


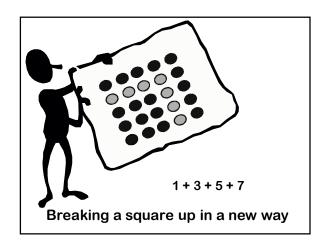


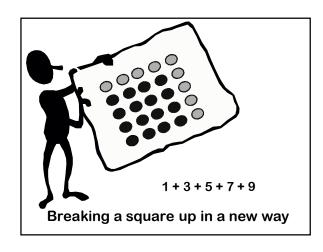


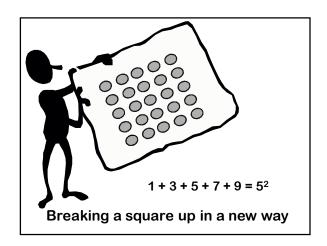


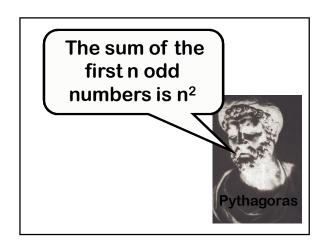


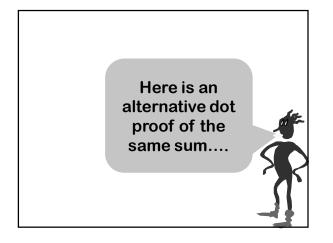


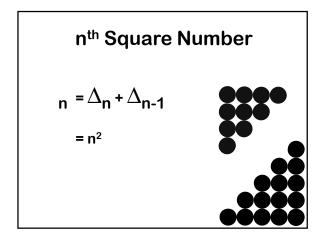


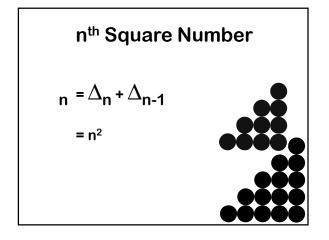


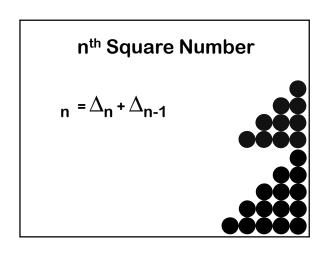


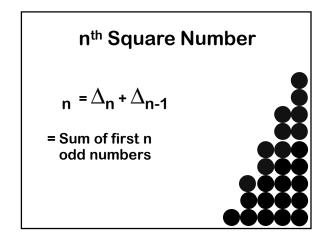


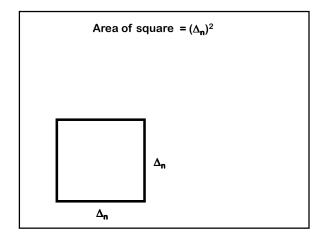


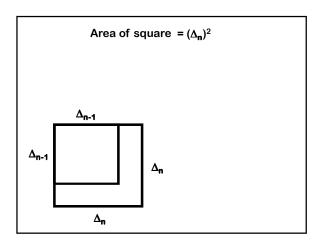


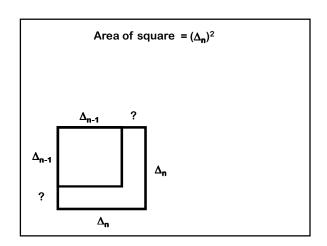


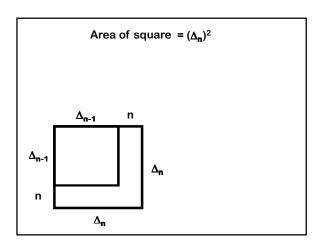


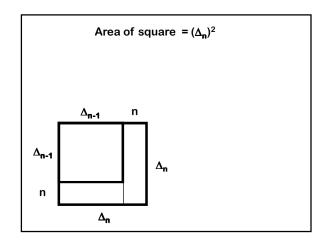


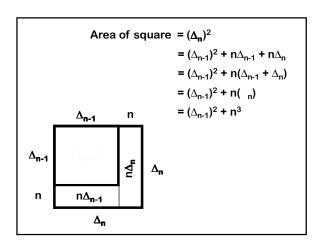










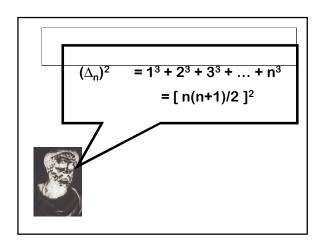


$$(\Delta_{n})^{2} = n^{3} + (\Delta_{n-1})^{2}$$

$$= n^{3} + (n-1)^{3} + (\Delta_{n-2})^{2}$$

$$= n^{3} + (n-1)^{3} + (n-2)^{3} + (\Delta_{n-3})^{2}$$

$$= n^{3} + (n-1)^{3} + (n-2)^{3} + \dots + 1^{3}$$



Here's What You Need to Know...

Random Walk in a Line

Cover Time of a Graph

Markov's Inequality

Dot Proofs