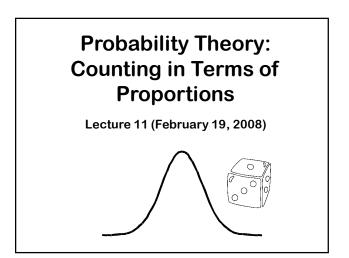
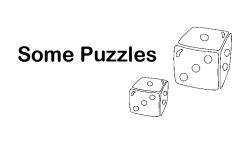
Some 15-251
Great Theoretical Ideas
in Computer Science
for





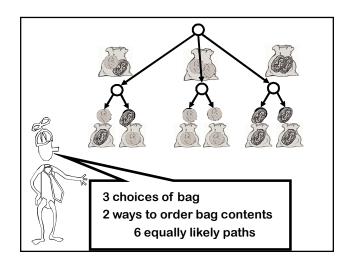
Teams A and B are equally good In any one game, each is equally likely to win What is most likely length of a "best of 7" series?

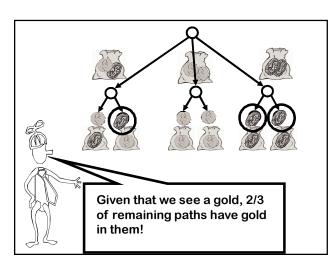
Flip coins until either 4 heads or 4 tails Is this more likely to take 6 or 7 flips?

6 and 7 Are Equally Likely

To reach either one, after 5 games, it must be 3 to 2

1/2 chance it ends 4 to 2; 1/2 chance it doesn't





Sometimes, probabilities can be counter-intuitive

The formal language of probability is a very important tool in describing and analyzing probability distribution

Finite Probability Distribution

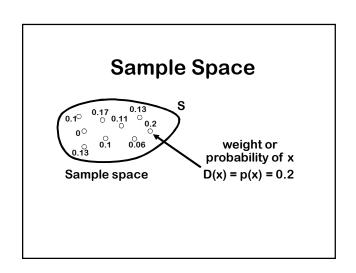
A (finite) probability distribution D is a finite set S of elements, where each element x in S has a positive real weight, proportion, or probability p(x)

The weights must satisfy:

$$\sum_{x \in S} p(x) = 1$$

For convenience we will define D(x) = p(x)

S is often called the sample space and elements x in S are called samples



Events

Any set $E \subseteq S$ is called an event

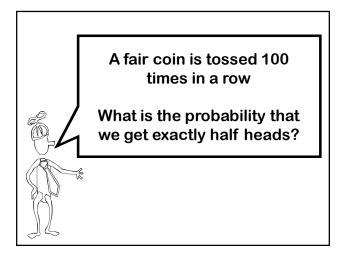
$$Pr_{D}[E] = \sum_{x \in E} p(x)$$

$$Pr_{D}[E] = 0.4$$

Uniform Distribution

If each element has equal probability, the distribution is said to be uniform

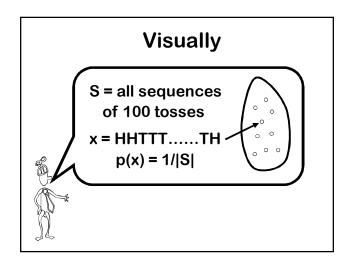
$$Pr_{D}[E] = \sum_{x \in E} p(x) = \frac{|E|}{|S|}$$

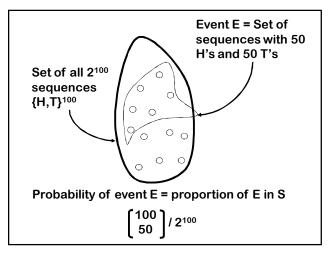


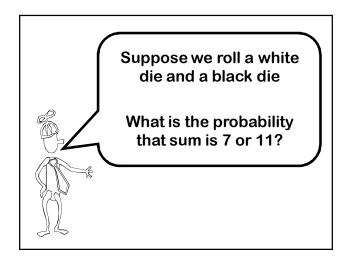
Using the Language

The sample space S is the set of all outcomes {H,T}¹⁰⁰

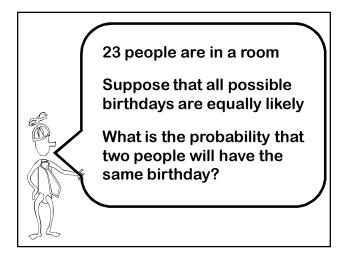
Each sequence in S is equally likely, and hence has probability 1/|S|=1/2¹⁰⁰

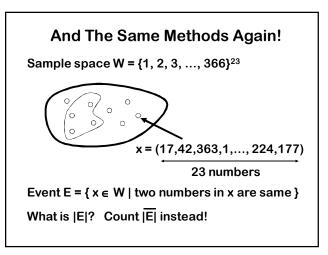


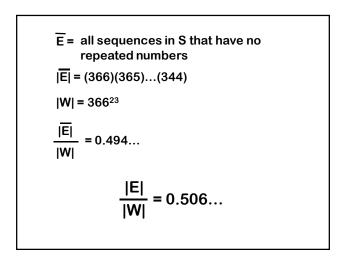


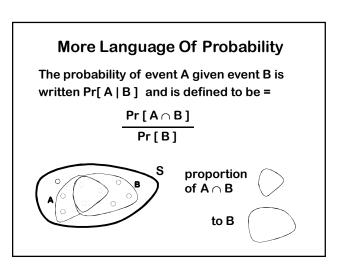


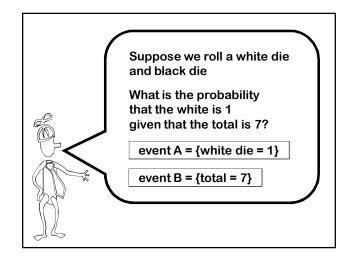
Same Methodology! (1,6), $S = \{(1,1), (1,2), (1,3), (1,4), (1,5), (1$ (2,1), (2,2), (2,3), (2,4),(2,5),(2,6),(3,4), (3,1), (3,2), (3,3), (3,5),(3,6), (4,1), (4,2), (4,3),(4,4), (4,5), (4,6),(5,1), (5,2), (5,6), (5,3),(5,5), (5,4), $(6,1), \overline{(6,2),}$ (6,3), (6,4), (6,5), $\overline{(6,6)}$ Pr[E] = |E|/|S| = proportion of E in S = 8/36

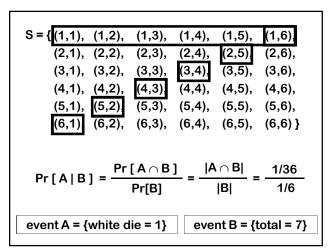












Independence!

A and B are independent events if

 \Leftrightarrow

 $Pr[A \cap B] = Pr[A] Pr[B]$

 \Leftrightarrow

Pr[B|A] = Pr[B]

Independence!

 $A_1, A_2, ..., A_k$ are independent events if knowing if some of them occurred does not change the probability of any of the others occurring

E.g., {A₁, A₂, A₃} are independent events if: $Pr[A_1 | A_2 \cap A_3] = Pr[A_1]$ $Pr[A_2 | A_1 \cap A_3] = Pr[A_2]$ $Pr[A_3 | A_1 \cap A_2] = Pr[A_3]$

 $Pr[A_1 | A_2] = Pr[A_1]$ $Pr[A_1 | A_3] = Pr[A_1]$ $Pr[A_2 | A_1] = Pr[A_2]$ $Pr[A_2 | A_3] = Pr[A_2]$ $Pr[A_3 | A_1] = Pr[A_3]$ $Pr[A_3 | A_2] = Pr[A_3]$

Silver and Gold

One bag has two silver coins, another has two gold coins, and the third has one of each

One bag is selected at random. One coin from it is selected at random. It turns out to be gold

What is the probability that the other coin is gold?

Let G₁ be the event that the first coin is gold

 $Pr[G_1] = 1/2$

Let G₂ be the event that the second coin is gold

 $Pr[G_2 \mid G_1] = Pr[G_1 \text{ and } G_2] / Pr[G_1]$

= (1/3) / (1/2)

= 2/3

Note: G₁ and G₂ are not independent

Monty Hall Problem

Announcer hides prize behind one of 3 doors at random

You select some door

Announcer opens one of others with no prize

You can decide to keep or switch

What to do?

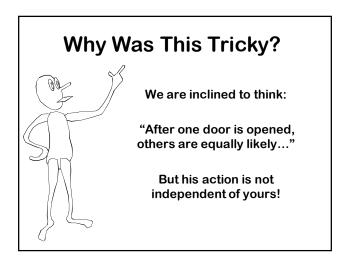
Monty Hall Problem

Sample space = { prize behind door 1, prize behind door 2, prize behind door 3 }

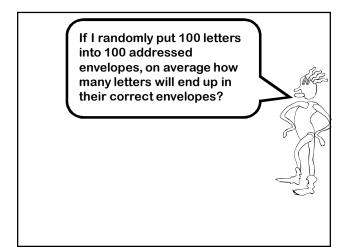
Each has probability 1/3

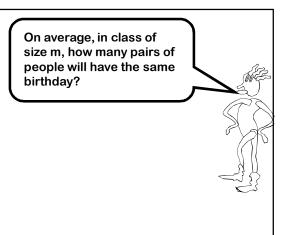
Staying we win if we choose the correct door Switching we win if we choose the incorrect door

Pr[choosing correct door] = 1/3 Pr[choosing incorrect door] = 2/3



Next, we will learn about a formidable tool in probability that will allow us to solve problems that seem really really messy...





The new tool is called "Linearity of Expectation"

Random Variable

To use this new tool, we will also need to understand the concept of a Random Variable

Random Variable

Let S be sample space in a probability distribution A Random Variable is a real-valued function on S Examples:

X = value of white die in a two-dice roll X(3,4) = 3, X(1,6) = 1

Y = sum of values of the two dice

Y(3,4) = 7, Y(1,6) = 7

W = (value of white die)^{value of black die} $W(3,4) = 3^4, Y(1,6) = 1^6$

Tossing a Fair Coin n Times

 $S = all sequences of {H, T}^n$

D = uniform distribution on S

 \Rightarrow D(x) = $(\frac{1}{2})^n$ for all $x \in S$

Random Variables (say n = 10)

X = # of heads

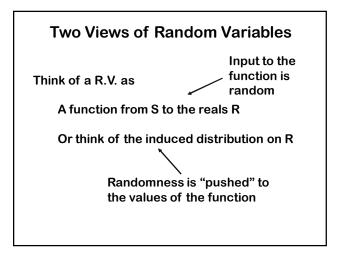
X(HHHTTHTHTT) = 5

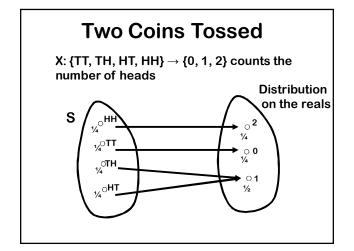
Y = (1 if #heads = #tails, 0 otherwise)

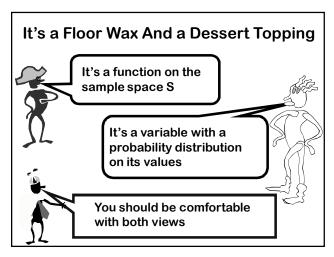
Y(HHHTTHTHTT) = 1, Y(THHHHTTTTT) = 0

Notational Conventions

Use letters like A, B, E for events Use letters like X, Y, f, g for R.V.'s R.V. = random variable



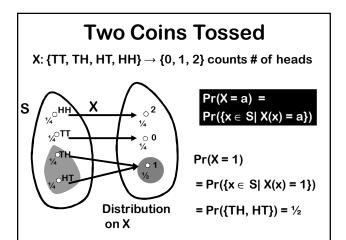




From Random Variables to Events

For any random variable X and value a, we can define the event A that X = a

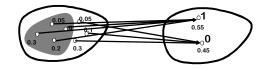
$$Pr(A) = Pr(X=a) = Pr(\{x \in S | X(x)=a\})$$



From Events to Random Variables

For any event A, can define the indicator random variable for A:

$$X_{A}(x) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A \end{cases}$$



Definition: Expectation

The expectation, or expected value of a random variable X is written as E[X], and is

$$E[X] = \sum_{x \in S} Pr(x) \ X(x) = \sum_{k} k \ Pr[X = k]$$

$$X \text{ is a function} \qquad X \text{ has a}$$
on the sample space S distribution on

its values

A Quick Calculation...

What if I flip a coin 3 times? What is the expected number of heads?

$$E[X] = (1/8) \times 0 + (3/8) \times 1 + (3/8) \times 2 + (1/8) \times 3 = 1.5$$

But Pr[X = 1.5] = 0

Moral: don't always expect the expected. Pr[X = E[X]] may be 0!

Type Checking

A Random Variable is the type of thing you might want to know an expected value of

If you are computing an expectation, the thing whose expectation you are computing is a random variable

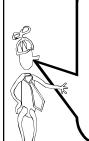
Indicator R.V.s: $E[X_A] = Pr(A)$

For any event A, can define the indicator random variable for A:

$$X_{A}(x) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A \end{cases}$$

$$\mathsf{E}[\mathsf{X}_\mathsf{A}] = 1 \times \mathsf{Pr}(\mathsf{X}_\mathsf{A} = 1) = \mathsf{Pr}(\mathsf{A})$$

Adding Random Variables



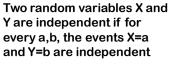
If X and Y are random variables (on the same set S), then Z = X + Y is also a random variable

$$Z(x) = X(x) + Y(x)$$

E.g., rolling two dice. X = 1st die, Y = 2nd die, Z = sum of two dice

Example: Consider picking a random person in the world. Let X = length of the person's left arm in inches. Y = length of the person's right arm in inches. Let Z = X+Y. Z measures the combined arm lengths

Independence



How about the case of X=1st die, Y=2nd die? X = left arm, Y=right arm?

Linearity of Expectation

If Z = X+Y, then

E[Z] = E[X] + E[Y]

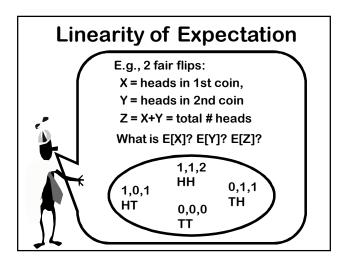
Even if X and Y are not independent

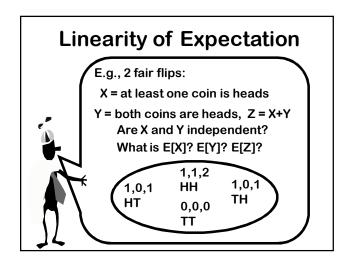
$$E[Z] = \sum_{x \in S} Pr[x] Z(x)$$

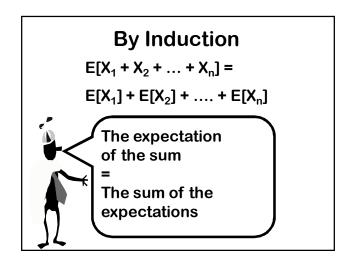
$$= \sum_{x \in S} Pr[x] (X(x) + Y(x))$$

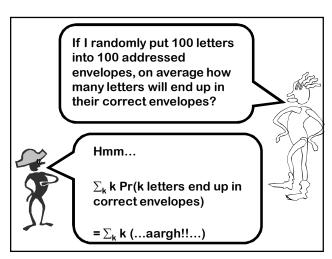
$$= \sum_{\mathbf{X} \in S} \Pr[\mathbf{X}] \, \mathbf{X}(\mathbf{X}) + \sum_{\mathbf{X} \in S} \Pr[\mathbf{X}] \, \mathbf{Y}(\mathbf{X}))$$

$$= E[X] + E[Y]$$









Use Linearity of Expectation

Let \mathbf{A}_i be the event the i^{th} letter ends up in its correct envelope

Let X_i be the indicator R.V. for A_i

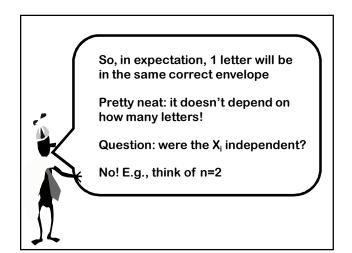
$$X_i = \begin{cases} 1 & \text{if } A_i \text{ occurs} \\ 0 & \text{otherwise} \end{cases}$$

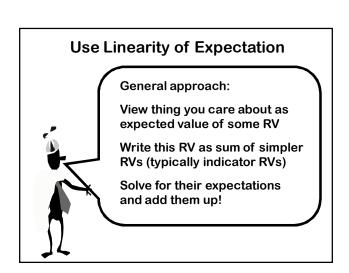
Let $Z = X_1 + ... + X_{100}$

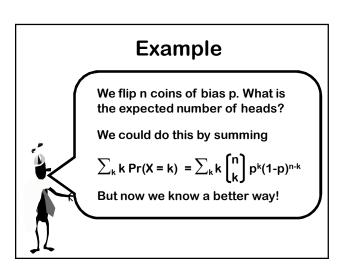
We are asking for E[Z]

 $E[X_i] = Pr(A_i) = 1/100$

So E[Z] = 1







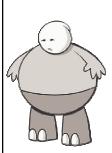
Linearity of Expectation!

Let X = number of heads when n independent coins of bias p are flipped

Break X into n simpler RVs:

$$X_i = \left\{ \begin{array}{l} 1 \text{ if the } i^{th} \text{ coin is tails} \\ 0 \text{ if the } i^{th} \text{ coin is heads} \end{array} \right.$$

$$E[X] = E[\Sigma_i X_i] = np$$



Here's What You Need to Know...

Language of Probability

Events Pr[A|B]

Independence

Random Variables

Definition

Two Views of R.V.s

Expectation

Definition

Linearity