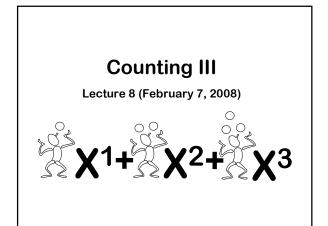
AWesome 15-251
Some Great Theoretical Ideas
in Computer Science for with Ben Wolf



How many integer solutions to the following equation?

$$x_1 + x_2 + x_3 + x_4 + x_5 = 30$$

 $x_1, x_2, x_3, x_4, x_5 \ge 0$

Think of x_k as being the number of gold bars that are allotted to pirate k

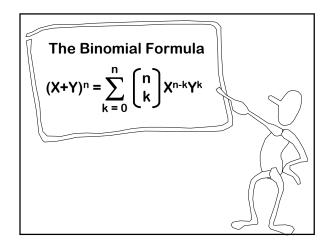
 $\begin{bmatrix} 34 \\ 4 \end{bmatrix}$

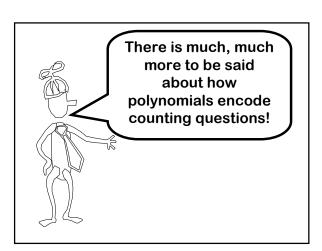
How many integer solutions to the following equation?

$$x_1 + x_2 + x_3 + ... + x_n = k$$

 $x_1, x_2, x_3, ..., x_n \ge 0$

$$\binom{n+k-1}{n-1} = \binom{n+k-1}{k}$$





Power Series Representation

$$(1+X)^n = \sum_{k=0}^n \binom{n}{k} X^k$$
"Product form" or "Generating form"
$$= \sum_{k=0}^{\infty} \binom{n}{k} X^k \qquad \binom{n}{k} = 0$$
"Power Series" or "Taylor Series" Expansion

By playing these two representations against each other we obtain a new representation of a previous insight:

$$(1+X)^n = \sum_{k=0}^n \binom{n}{k} X^k$$

Let x = 1,
$$2^n = \sum_{k=0}^{n} {n \choose k}$$

The number of subsets of an n-element set

By varying x, we can discover new identities:

$$(1+X)^n = \sum_{k=0}^n \binom{n}{k} X^k$$

Let x = -1,
$$0 = \sum_{k=0}^{n} {n \choose k} (-1)^k$$

Equivalently,
$$\sum_{k \text{ odd}}^{n} {n \choose k} = \sum_{k \text{ even}}^{n} {n \choose k}$$

The number of subsets with even size is the same as the number of subsets with odd size

$$(1+X)^n = \sum_{k=0}^n \binom{n}{k} X^k$$

Proofs that work by manipulating algebraic forms are called "algebraic" arguments. Proofs that build a bijection are called "combinatorial" arguments

$$\sum_{k \text{ odd}}^{n} \binom{n}{k} = \sum_{k \text{ even}}^{n} \binom{n}{k}$$

Let O_n be the set of binary strings of length n with an odd number of ones.

Let E_n be the set of binary strings of length n with an even number of ones.

We gave an algebraic proof that

$$|O_n| = |E_n|$$

A Combinatorial Proof

Let O_n be the set of binary strings of length n with an odd number of ones

Let E_n be the set of binary strings of length n with an even number of ones

A combinatorial proof must construct a bijection between O_n and E_n

An Attempt at a Bijection

Let f_n be the function that takes an n-bit string and flips all its bits

f_n is clearly a one-toone and onto function

for odd n. E.g. in f₇ we have:

...but do even n work? In f₆ we have

 $0010011 \rightarrow 1101100$ $1001101 \rightarrow 0110010$

110011 → **001100** $101010 \rightarrow 010101$

Uh oh. Complementing maps evens to evens!

A Correspondence That Works for all n

Let f_n be the function that takes an n-bit string and flips only the first bit. For example,

> $0010011 \rightarrow 1010011$ 1001101 → 0001101

110011 → 010011 101010 > 001010

$$(1+X)^n = \sum_{k=0}^n \binom{n}{k} X^k$$

The binomial coefficients have so many representations that many fundamental mathematical identities emerge...

The Binomial Formula

$$(1+X)^0 =$$

$$(1+X)^1 = 1 + 1X$$

$$(1+X)^2 = 1 + 2X + 1X^2$$

$$(1+X)^3 = 1 + 3X + 3X^2 + 1X^3$$

$$(1+X)^4 = 1 + 4X + 6X^2 + 4X^3 + 1X^4$$

Pascal's Triangle: kth row are coefficients of (1+X)k

Inductive definition of kth entry of nth row: Pascal(n,0) = Pascal(n,n) = 1;

Pascal(n,k) = Pascal(n-1,k-1) + Pascal(n-1,k)

"Pascal's Triangle"

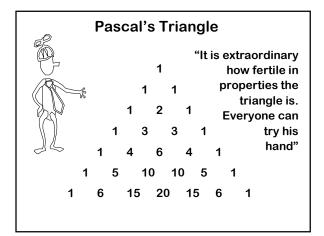
$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = 1$$

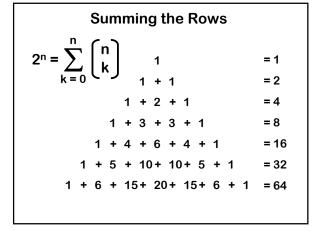
$$\begin{bmatrix} 1 \\ 0 \end{bmatrix} = 1 \qquad \begin{bmatrix} 1 \\ 1 \end{bmatrix} = 1$$

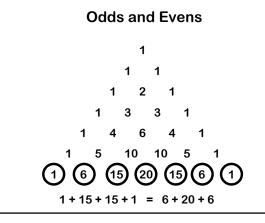
$$\begin{bmatrix} 2 \\ 0 \end{bmatrix} = 1 \qquad \begin{bmatrix} 2 \\ 1 \end{bmatrix} = 2 \qquad \begin{bmatrix} 2 \\ 2 \end{bmatrix} = 1$$

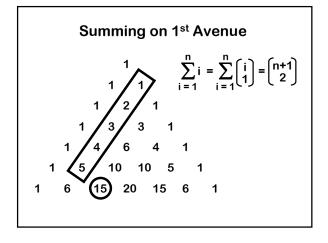
$$\begin{bmatrix} 3 \\ 0 \end{bmatrix} = 1 \qquad \begin{bmatrix} 3 \\ 1 \end{bmatrix} = 3 \qquad \begin{bmatrix} 3 \\ 2 \end{bmatrix} = 3 \qquad \begin{bmatrix} 3 \\ 3 \end{bmatrix} = 1$$

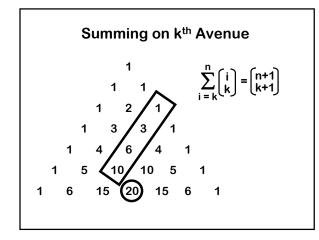
- · Al-Karaji, Baghdad 953-1029
- Chu Shin-Chieh 1303
- Blaise Pascal 1654

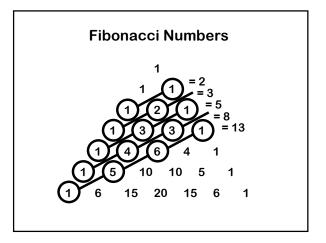


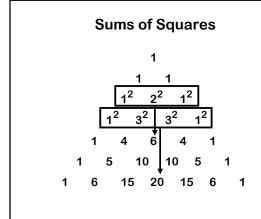


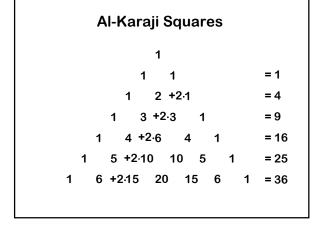


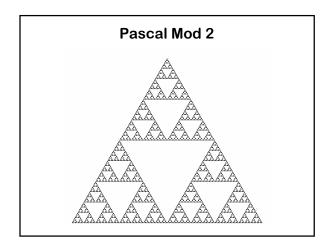


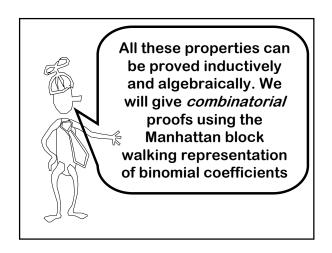


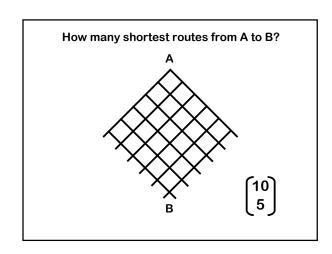


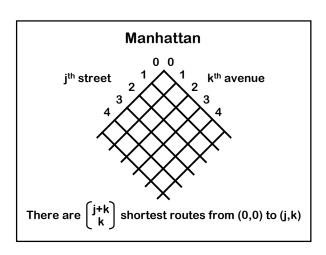


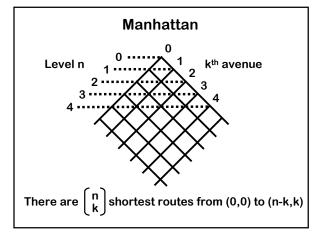


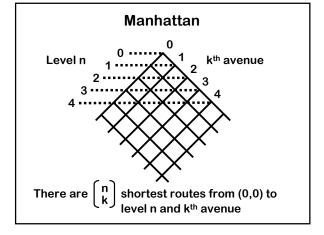


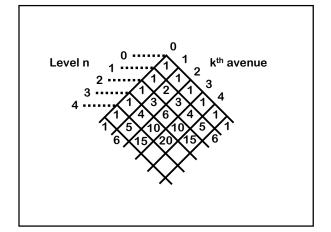


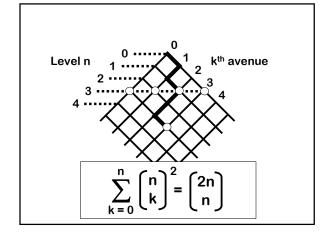












Vector Programs

Let's define a (parallel) programming language called VECTOR that operates on possibly infinite vectors of numbers. Each variable \vec{V} can be thought of as:

Vector Programs

Let k stand for a scalar constant <k> will stand for the vector <k,0,0,0,...>

 $\vec{V} + \vec{T}$ means to add the vectors position-wise

Vector Programs

RIGHT(\vec{V}) means to shift every number in \vec{V} one position to the right and to place a 0 in position 0

Vector Programs

Example: Store:

 \vec{V} := <6>; \vec{V} = <6,0,0,0,...> \vec{V} := RIGHT(\vec{V}) + <42>; \vec{V} = <42,6,0,0,...> \vec{V} := RIGHT(\vec{V}) + <2>; \vec{V} = <2,42,6,0,...> \vec{V} := RIGHT(\vec{V}) + <13>; \vec{V} = <13,2,42,6,...>

 \vec{V} = < 13, 2, 42, 6, 0, 0, 0, ... >

Vector Programs

Example: Store:

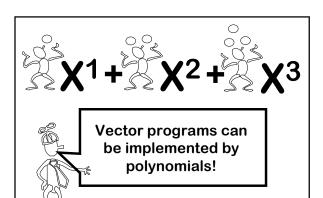
 $\vec{V} := <1>;$ $\vec{V} = <1,0,0,0,...>$

 $\vec{V} = <1,1,0,0,...>$

Loop n times $\vec{V} = <1,2,1,0,...>$

 $\vec{V} := \vec{V} + RIGHT(\vec{V}); \qquad \vec{V} = <1,3,3,1,...>$

 \vec{V} = nth row of Pascal's triangle



$\textbf{Programs} \rightarrow \textbf{Polynomials}$

The vector $\vec{V} = \langle a_0, a_1, a_2, ... \rangle$ will be represented by the polynomial:

$$P_V = \sum_{i=0}^{\infty} a_i X^i$$

Formal Power Series

The vector $\vec{V} = \langle a_0, a_1, a_2, ... \rangle$ will be represented by the formal power series:

$$P_V = \sum_{i=0}^{\infty} a_i X^i$$

$$\vec{V} = \langle a_0, a_1, a_2, \ldots \rangle$$

$$P_V = \sum_{i=0}^{\infty} a_i X^i$$

Vector Programs

Example:

 $\vec{V} := <1>; P_{V} := 1;$

Loop n times $P_V := P_V + P_V X;$

 $\vec{\mathsf{V}} := \vec{\mathsf{V}} + \mathsf{RIGHT}(\vec{\mathsf{V}});$

 $\vec{V} = n^{th}$ row of Pascal's triangle

Vector Programs

Example:

 $\vec{V} := <1>; P_{v} := 1;$

Loop n times $\vec{V} := \vec{V} + RIGHT(\vec{V});$ $P_V := P_V(1+X);$

 \vec{V} = nth row of Pascal's triangle

Vector Programs

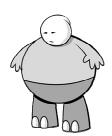
Example:

V := <1>;

Loop n times $\vec{V} := \vec{V} + RIGHT(\vec{V});$

 $P_V = (1+X)^n$

 \vec{V} = nth row of Pascal's triangle



- Here's What You Need to Know...
- Polynomials count
- Binomial formula
- Combinatorial proofs of binomial identities
- Vector programs