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Lecture 8 (February 7, 2008)

Counting III

How many integer solutions 
to the following equation?

x1 + x2 + x3 + x4 + x5 = 30

x1, x2, x3, x4, x5 ≥ 0

Think of xk as being the number of 
gold bars that are allotted to pirate k

34

4

How many integer solutions 
to the following equation?

x1 + x2 + x3 + … + xn = k

x1, x2, x3, …, xn ≥ 0

n + k - 1

n - 1

n + k - 1

k
=

The Binomial Formula

(X+Y)n =
n

k
Xn-kYk∑∑∑∑

k = 0

n

There is much, much 
more to be said 

about how 
polynomials encode 
counting questions!
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Power Series Representation

(1+X)n =
n

k
Xk∑∑∑∑

k = 0

n

n

k
Xk∑∑∑∑

k = 0

∞∞∞∞

=“Product form” or
“Generating form”

“Power Series” or “Taylor Series” Expansion

For k>n,

n

k
= 0

By playing these two representations 
against each other we obtain a new 
representation of a previous insight:

(1+X)n =
n

k
Xk∑∑∑∑

k = 0

n

Let x = 1,
n

k∑∑∑∑
k = 0

n

2n =

The number of subsets 
of an n-element set

By varying x, we can discover new 
identities:

(1+X)n =
n

k
Xk∑∑∑∑

k = 0

n

Let x = -1,
n

k∑∑∑∑
k = 0

n

0 = (-1)k

Equivalently,
n

k∑∑∑∑
k even

n
n

k∑∑∑∑
k odd

n

=

The number of subsets 
with even size is the 

same as the number of 
subsets with odd size

Proofs that work by manipulating 
algebraic forms are called 

“algebraic” arguments. Proofs that 
build a bijection are called 
“combinatorial” arguments

(1+X)n =
n

k
Xk∑∑∑∑

k = 0

n

Let On be the set of binary strings of 
length n with an odd number of ones.

Let En be the set of binary strings of 
length n with an even number of ones.

We gave an algebraic proof that

|On | = | En |

n

k∑∑∑∑
k even

n
n

k∑∑∑∑
k odd

n

=
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A Combinatorial  Proof

Let On be the set of binary strings of length n 
with an odd number of ones

Let En be the set of binary strings of length n 
with an even number of ones

A combinatorial proof must construct a 
bijection between On  and En 

An Attempt at a Bijection

Let fn be the function that takes an 

n-bit string and flips all its bits

fn is clearly a one-to-
one and onto function

...but do even n
work? In f6 we have

for odd n.  E.g. in f7
we have:

110011 � 001100

101010 � 010101

0010011 � 1101100

1001101 � 0110010

Uh oh.  Complementing 
maps evens to evens!

A Correspondence That 
Works for all n

Let fn be the function that takes an n-bit string 
and flips only the first bit. For example,

0010011 � 1010011

1001101 � 0001101

110011 � 010011

101010 � 001010

The binomial coefficients have so 
many representations that many 

fundamental mathematical 
identities emerge…

(1+X)n =
n

k
Xk∑∑∑∑

k = 0

n

The Binomial Formula

(1+X)0 =

(1+X)1 =

(1+X)2 =

(1+X)3 =

(1+X)4 =

1

1 + 1X

1 + 2X + 1X2

1 + 3X + 3X2 + 1X3

1 + 4X + 6X2 + 4X3 + 1X4

Pascal’s Triangle: kth row are coefficients of (1+X)k

Inductive definition of kth entry of nth row:
Pascal(n,0) = Pascal (n,n) = 1; 

Pascal(n,k) = Pascal(n-1,k-1) + Pascal(n-1,k)

“Pascal’s Triangle”

0
0

= 1

1
0

= 1 1
1

= 1

2
0

= 1 2
1

= 2 2
2

= 1

• Al-Karaji, Baghdad 953-1029

• Chu Shin-Chieh 1303

• Blaise Pascal 1654

3
0

= 1 3
1

= 3 3
2

= 3 3
3

= 1
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Pascal’s Triangle

“It is extraordinary

how fertile in

properties the

triangle is.

Everyone can

try his

hand”

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

Summing the Rows

+

+ +

+ + +

+ + + +

+ + + + +

+ + + + + +

n

k∑∑∑∑
k = 0

n

2n = = 1

= 2

= 4

= 8

= 16

= 32

= 64

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 + 15 + 15 + 1 6 + 20 + 6=

Odds and Evens

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

Summing on 1st Avenue

∑∑∑∑
i = 1

n
i
1

=∑∑∑∑
i = 1

n

i n+1
2

=

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

Summing on kth Avenue

∑∑∑∑
i = k

n
i
k

n+1
k+1

=

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

Fibonacci Numbers

= 2
= 3
= 5
= 8
= 13
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1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

Sums of Squares

2 2 2

2 2 2 2

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

Al-Karaji Squares

+2⋅⋅⋅⋅

+2⋅⋅⋅⋅

+2⋅⋅⋅⋅

+2⋅⋅⋅⋅

+2⋅⋅⋅⋅

= 1

= 4

= 9

= 16

= 25

= 36

Pascal Mod 2
All these properties can 
be proved inductively 
and algebraically. We 
will give combinatorial

proofs using the 
Manhattan block 

walking representation 
of binomial coefficients

How many shortest routes from A to B?

B

A

10

5

Manhattan

jth street kth avenue1
0

2

4
3

0
1
2
3
4

There are shortest routes from (0,0) to (j,k)
j+k
k



6

Manhattan

Level n kth avenue1
0

2

4
3

0
1
2
3
4

There are shortest routes from (0,0) to (n-k,k)
n
k

Manhattan

Level n kth avenue1
0

2

4
3

0
1
2
3
4

There are shortest routes from (0,0) ton
k

level n and kth avenue

Level n kth avenue1
0

2

4
3

0
1
2
3
4

1
1

1
1

1

1
1
1
1

2
3 3

4 46
1 15 510 10

66 1515 20

Level n kth avenue1
0

2

4
3

1
1

1
1

1

1
1
1
1

2
3 3

4 46
1 15 510 10

66 1515 20

n

k

n-1

k-1

n-1

k
= +

+

Level n kth avenue1
0

2

4
3

0
1
2
3
4

2n

n

n

k∑∑∑∑
k = 0

n 2

=

Vector Programs

Let’s define a (parallel) programming 
language called VECTOR that operates 
on possibly infinite vectors of numbers. 
Each variable V can be thought of as:

< * , * , * , * , *, *, … >
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Vector Programs

Let k stand for a scalar constant

<k> will stand for the vector <k,0,0,0,…>

<0> = <0,0,0,0,…>

<1> = <1,0,0,0,…>

V + T means to add the vectors position-wise

<4,2,3,…> + <5,1,1,….> = <9,3,4,…>

Vector Programs

RIGHT(V) means to shift every number 
in V one position to the right and to 
place a 0 in position 0

RIGHT( <1,2,3, …> ) = <0,1,2,3,…>

Vector Programs

Example:

V := <6>;

V := RIGHT(V) + <42>;

V := RIGHT(V) + <2>;

V := RIGHT(V) + <13>;

V = < 13, 2, 42, 6, 0, 0, 0, … >

Store:

V = <6,0,0,0,…>

V = <42,6,0,0,…>

V = <2,42,6,0,…>

V = <13,2,42,6,…>

Vector Programs

Example:

V := <1>;

Loop n times

V := V + RIGHT(V);

V = nth row of Pascal’s triangle

Store:

V = <1,0,0,0,…>

V = <1,1,0,0,…>

V = <1,2,1,0,…>

V = <1,3,3,1,…>

 X1  X2 +  +  X3

Vector programs can 
be implemented by 

polynomials!

Programs → Polynomials

The vector V = < a0, a1, a2, . . . > will be 
represented by the polynomial:

∑∑∑∑
i = 0

∞∞∞∞

aiX
iPV =
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Formal Power Series

The vector V = < a0, a1, a2, . . . > will be 
represented by the formal power series:

∑∑∑∑
i = 0

∞∞∞∞

aiX
iPV =

∑∑∑∑
i = 0

∞∞∞∞

aiX
iPV =

V = < a0, a1, a2, . . . >

<0> is represented by

<k> is represented by

0

k

V + T is represented by (PV + PT)

RIGHT(V) is represented by (PV X)

Vector Programs

Example:

V := <1>;

Loop n times

V := V + RIGHT(V);

V = nth row of Pascal’s triangle

PV := 1;

PV := PV + PV X;

Vector Programs

Example:

V := <1>;

Loop n times

V := V + RIGHT(V);

V = nth row of Pascal’s triangle

PV := 1;

PV := PV(1+X);

Vector Programs

Example:

V := <1>;

Loop n times

V := V + RIGHT(V);

V = nth row of Pascal’s triangle

PV = (1+ X)
n

• Polynomials count

• Binomial formula

• Combinatorial proofs of   
binomial identities

• Vector programs

Here’s What 
You Need to 
Know…


