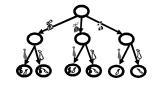
Some 15-251
Great Theoretical Ideas
in Computer Science
for

Counting I: One-To-One Correspondence and Choice Trees

Lecture 6 (January 31, 2007)



If I have 14 teeth on the top and 12 teeth on the bottom, how many teeth do I have in all?

Addition Rule

Let A and B be two disjoint finite sets

$$|\mathbf{A} \cup \mathbf{B}| = |\mathbf{A}| + |\mathbf{B}|$$

Addition of Multiple Disjoint Sets:

Let A₁, A₂, A₃, ..., A_n be disjoint, finite sets:

$$\left|\bigcup_{i=1}^n \mathbf{A}_i\right| = \sum_{i=1}^n \left|\mathbf{A}_i\right|$$

Addition Rule (2 Possibly Overlapping Sets)

Let A and B be two finite sets:

Partition Method

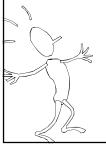
Partition Method

To count the elements of a finite set S, partition the elements into non-overlapping subsets $A_1,\,A_2,\,A_3,\,...,\,A_n.$

$$\left|\bigcup_{i=1}^{n} \mathbf{A}_{i}\right| = \sum_{i=1}^{n} \left|\mathbf{A}_{i}\right|$$

Partition Method

S = all possible outcomes of one white die and one black die.



Partition Method

S = all possible outcomes of one white die and one black die.

Partition S into 6 sets:

 A_1 = the set of outcomes where the white die is 1.

 A_2 = the set of outcomes where the white die is 2.

 A_3 = the set of outcomes where the white die is 3.

 A_4 = the set of outcomes where the white die is 4.

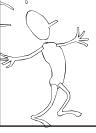
 A_5^7 = the set of outcomes where the white die is 5.

 A_6 = the set of outcomes where the white die is 6.

Each of 6 disjoint set have size 6 = 36 outcomes

Partition Method

S = all possible outcomes where the white die and the black die have different values



S = Set of all outcomes where the dice show different values. |S| = ?

A_i = set of outcomes where black die says i and the white die says something else.

$$|S| = \sum_{i=1}^{6} |A_i| = \sum_{i=1}^{6} 5 = 30$$

S = Set of all outcomes where the dice show different values. |S| = ?

 $T \equiv$ set of outcomes where dice agree.

$$|S \cup T| = # \text{ of outcomes} = 36$$

$$|S| + |T| = 36$$

$$|T| = 6$$

$$|S| = 36 - 6 = 30$$

S ≡ Set of all outcomes where the black die shows a smaller number than the white die. | S | = ?

 A_i = set of outcomes where the black die says i and the white die says something larger.

$$S = A_1 \cup A_2 \cup A_3 \cup A_4 \cup A_5 \cup A_6$$

$$|S| = 5 + 4 + 3 + 2 + 1 + 0 = 15$$

S ≡ Set of all outcomes where the black die shows a smaller number than the white die. | S | = ?

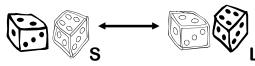
 $L \equiv set$ of all outcomes where the black die shows a larger number than the white die.

It is clear by symmetry that |S| = |L|.

"It is clear by symmetry that |S| = |L|?"

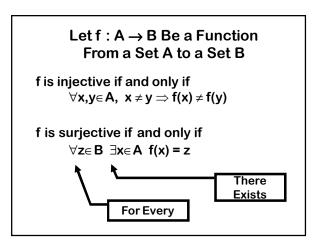
Pinning Down the Idea of Symmetry by Exhibiting a Correspondence

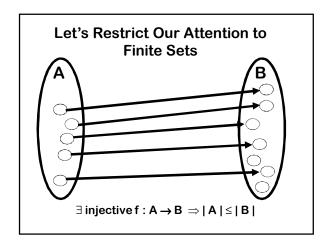
Put each outcome in S in correspondence with an outcome in L by swapping color of the dice.

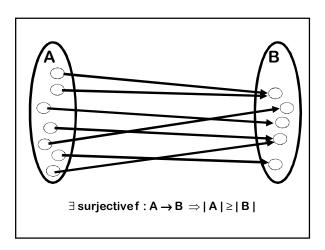


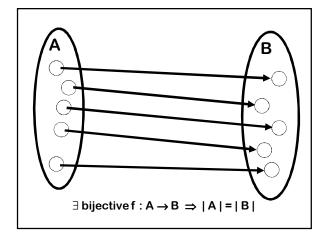
Each outcome in S gets matched with exactly one outcome in L, with none left over.

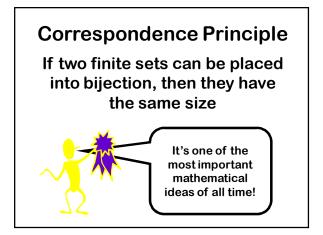
Thus: | S | = | L |





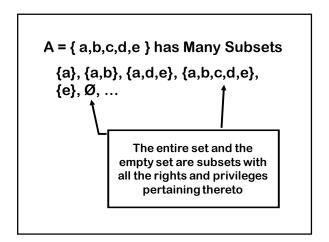






Question: How many n-bit sequences are there?

Each sequence corresponds to a unique number from 0 to 2^n -1. Hence 2^n sequences.



Question: How Many Subsets Can Be Made From The Elements of a 5-Element Set?

Each subset corresponds to a 5-bit sequence (using the "take it or leave it" code)

A = $\{a_1, a_2, a_3,..., a_n\}$ B = set of all n-bit strings

For bit string $b = b_1b_2b_3...b_n$, let $f(b) = \{a_i | b_i=1\}$

Claim: f is injective

Any two distinct binary sequences b and b' have a position i at which they differ

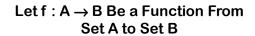
Hence, f(b) is not equal to $f(b^\prime)$ because they disagree on element a_i

 $A = \{a_1, a_2, a_3, ..., a_n\}$ B = set of all n-bit strings

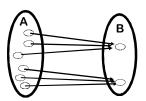
For bit string $b = b_1b_2b_3...b_n$, let $f(b) = \{ a_i | b_i=1 \}$

Claim: f is surjective

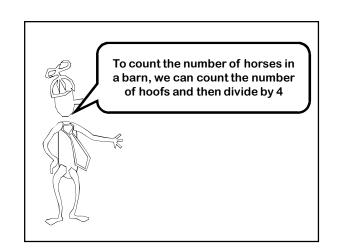
Let S be a subset of $\{a_1,...,a_n\}$. Define $b_k = 1$ if a_k in S and $b_k = 0$ otherwise. Note that $f(b_1b_2...b_n) = S$. The number of subsets of an n-element set is 2ⁿ



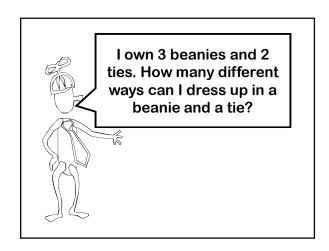
f is a 1 to 1 correspondence (bijection) iff $\forall z \in B \ \exists$ exactly one $x \in A$ such that f(x) = z f is a k to 1 correspondence iff $\forall z \in B \ \exists$ exactly k $x \in A$ such that f(x) = z

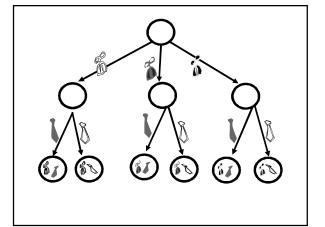


3 to 1 function



If a finite set A
has a k-to-1
correspondence
to finite set B,
then |B| = |A|/k





A Restaurant Has a Menu With 5 Appetizers, 6 Entrees, 3 Salads, and 7 Desserts

How many items on the menu?

$$5+6+3+7=21$$

How many ways to choose a complete meal?

$$5 \times 6 \times 3 \times 7 = 630$$

How many ways to order a meal if I am allowed to skip some (or all) of the courses?

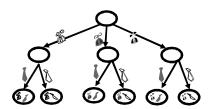
$$6 \times 7 \times 4 \times 8 = 1344$$

Leaf Counting Lemma

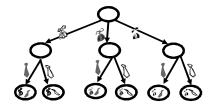
Let T be a depth-n tree when each node at depth $0 \le i \le n-1$ has P_{i+1} children

The number of leaves of T is given by: $P_1P_2...P_n$

Choice Tree



A choice tree is a rooted, directed tree with an object called a "choice" associated with each edge and a label on each leaf



A choice tree provides a "choice tree representation" of a set S, if

- 1. Each leaf label is in S, and each element of S is some leaf label
- 2. No two leaf labels are the same

We will now combine the correspondence principle with the leaf counting lemma to make a powerful counting rule for choice tree representation.

Product Rule

Suppose every object of a set S can be constructed by a sequence of choices with P_1 possibilities for the first choice, P_2 for the second, and so on.

IF 1. Each sequence of choices constructs an object of type S

AND

2. No two different sequences create the same object

THEN

There are P₁P₂P₃...P_n objects of type S

How Many Different Orderings of Deck With 52 Cards?

What object are we making? Ordering of a deck

Construct an ordering of a deck by a sequence of 52 choices:

52 possible choices for the first card;

51 possible choices for the second card;

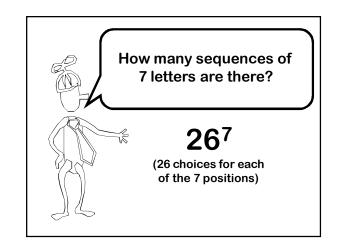
: :

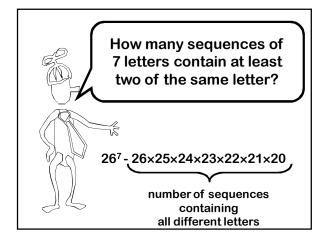
1 possible choice for the 52nd card.

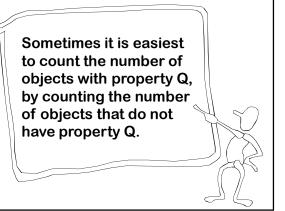
By product rule: $52 \times 51 \times 50 \times ... \times 2 \times 1 = 52!$

A permutation or arrangement of n objects is an ordering of the objects

The number of permutations of n distinct objects is n!







If 10 horses race, how many orderings of the top three finishers are there?

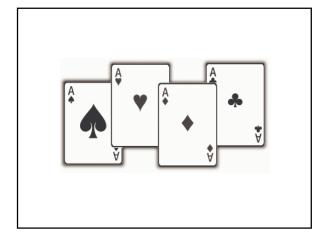
$$10 \times 9 \times 8 = 720$$

Number of ways of ordering, permuting, or arranging r out of n objects

n choices for first place, n-1 choices for second place, \dots

$$n \times (n-1) \times (n-2) \times ... \times (n-(r-1))$$

$$= \frac{n!}{(n-r)!}$$



Ordered Versus Unordered

From a deck of 52 cards how many ordered pairs can be formed?

 52×51

How many unordered pairs?

52×51 / 2 ← divide by overcount

Each unordered pair is listed twice on a list of the ordered pairs

Ordered Versus Unordered

From a deck of 52 cards how many ordered pairs can be formed?

 52×51

How many unordered pairs?

52×51 / 2 ← divide by overcount

We have a 2-1 map from ordered pairs to unordered pairs. Hence #unordered pairs = (#ordered pairs)/2 Ordered Versus Unordered

How many ordered 5 card sequences can be formed from a 52-card deck?

 $52 \times 51 \times 50 \times 49 \times 48$

How many orderings of 5 cards?

5!

How many unordered 5 card hands?

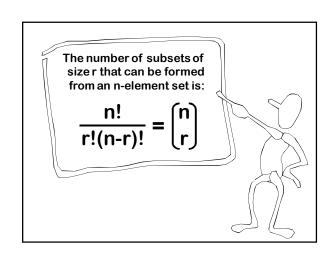
 $(52 \times 51 \times 50 \times 49 \times 48)/5! = 2,598,960$

A combination or choice of r out of n objects is an (unordered) set of r of the n objects

The number of r combinations of n objects:

$$\frac{n!}{r!(n-r)!} = \binom{n}{r}$$

$$n \text{ "choose" r}$$



How Many 8-Bit Sequences Have 2 0's and 6 1's?

Tempting, but incorrect: 8 ways to place first 0, times 7 ways to place second 0

Violates condition 2 of product rule!

Choosing position i for the first 0 and then position j for the second 0 gives same sequence as choosing position j for the first 0 and position i for the second 0

2 ways of generating the same object!

How Many 8-Bit Sequences Have 2 0's and 6 1's?

1. Choose the set of 2 positions to put the 0's. The 1's are forced.

8 2

2. Choose the set of 6 positions to put the 1's. The 0's are forced.

8 6

Symmetry In The Formula

$$\binom{n}{r} = \frac{n!}{r!(n-r)!} = \binom{n}{n-r}$$

"# of ways to pick r out of n elements"

"# of ways to choose the (n-r) elements to omit"

How Many Hands Have at Least 3 As?

43

= ways of picking 3 out of 4 aces

(49²

= ways of picking 2 cards out of the remaining 49 cards

 $4 \times 1176 = 4704$

How Many Hands Have at Least 3 As?

How many hands have exactly 3 aces?

- $\begin{bmatrix} 4 \\ 3 \end{bmatrix}$ = ways of picking 3 out of 4 aces
- 48 = ways of picking 2 cards out of × 1128 2 the 48 non-ace cards 4512

How many hands have exactly 4 aces?

- $\begin{bmatrix} 4 \\ 4 \end{bmatrix}$ = ways of picking 4 out of 4 aces
- = ways of picking 1 cards out of the 48 non-ace cards

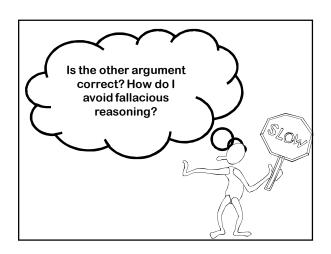
4512 + 48 4560 4704 ≠ 4560

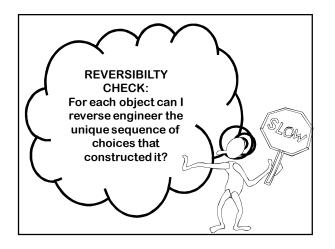
At least one of the two counting arguments is not correct!

Four Different Sequences of Choices Produce the Same Hand

- $\begin{bmatrix} 4 \\ 3 \end{bmatrix}$ = 4 ways of picking 3 out of 4 aces
- $\binom{49}{2}$ = 1176 ways of picking 2 cards out of the remaining 49 cards

A* A ◆ A ♥	A _♠ K+
A* A ◆ A ◆	A♥ K♦
A. A. A. A.	A+ K+
A♠ A♦ A♥	A





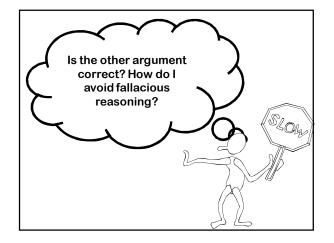
Scheme I

- 1. Choose 3 of 4 aces
- 2. Choose 2 of the remaining cards

A* A ◆ A ◆ A ★ K ◆

For this hard – you can't reverse to a unique choice sequence.

A* A A	A _A K+
A* A * A *	A♥ K♦
A* A* A♥	A+ K+
AA A+ A♥	A÷ K◆

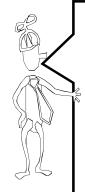


Scheme II

- 1. Choose 3 out of 4 aces
- 2. Choose 2 out of 48 non-ace cards

A* A* Q* A* K*

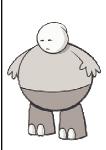
REVERSE TEST: Aces came from choices in (1) and others came from choices in (2)



DEFENSIVE THINKING ask yourself:

Am I creating objects of the right type?

Can I reverse engineer my choice sequence from any given object?



Here's What You Need to Know... Correspondence Principle

If two finite sets can be placed into 1-1 onto correspondence, then they have the same size

Choice Tree

Product Rule Two conditions

Reverse Test

Counting by complementing

Binomial coefficient