
1

15-251
Great Theoretical Ideas 

in Computer Science
for

Some

Deterministic 
Finite Automata

Lecture 5 (January 29, 2008)

A machine so simple that 
you can understand it in 

less than one minute
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The machine accepts a string if  the 
process ends in a double circle
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The machine accepts a string if  the 
process ends in a double circle

Anatomy of  a Deterministic Finite 
Automaton

states
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q3
start state (q0)

accept states (F)
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Anatomy of  a Deterministic Finite 
Automaton
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The alphabet of  a finite automaton is the set 
where the symbols come from:

The language of  a finite automaton is the set 
of  strings that it accepts

{0,1}
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L(M) = All strings of  0s and 1s∅

The Language of  Machine M
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L(M) = { w | w has an even number of  1s}
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An alphabet
ˬ

is a finite set (e.g., 
ˬ

= {0,1})

A string over 
ˬ

is a finite-length sequence of  
elements of  

ˬ
For x a string, |x| is the length of  x

The unique string of  length 0 will be denoted 
by ˾ and will be called the empty or null string

Notation

A language over ˬ is a set of  strings over 
ˬ
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Q is the set of  statesˬ
is the alphabet

δ : Q ×
ˬ ջ

Q is the transition function

q0 ∈ Q is the start state

F ⊆ Q is the set of  accept states

A finite automaton is a 5-tuple M = (Q, 
ˬ

, δ, q0, F)

L(M) = the language of  machine M
= set of  all strings machine M accepts
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Q = {q0, q1, q2, q3}ˬ
= {0,1}

δδδδ : Q ××××
ˬ ջ

 Q transition function*
q0 ∈∈∈∈ Q is start state

F  = {q1, q2} ⊆⊆⊆⊆ Q accept states

M = (Q, 
ˬ

, δδδδ, q0, F) where

δδδδ 0 1
q0 q0 q1

q1 q2 q2

q2 q3 q2

q3 q0 q2

*
q2
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Build an automaton that accepts all and only 
those strings that contain 001
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Build an automaton that accepts all strings 
whose length is divisible by 2 but not 3
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A language is regular if  it is 
recognized by a deterministic 

finite automaton

L = { w | w contains 001} is regular

L = { w | w has an even number of  1s} is regular
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Union Theorem

Given two languages, L1 and L2, define 
the union of  L1 and L2 as 

L1 ∪ L2 = { w | w ∈ L1 or w ∈ L2 } 

Theorem: The union of  two regular 
languages is also a regular language
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Theorem: The union of  two regular 
languages is also a regular language

Proof  Sketch: Let 

M1 = (Q1, 
ˬ

, δ1, q0, F1) be finite automaton for L1

and 

M2 = (Q2, 
ˬ

, δ2, q0, F2) be finite automaton for L2

We want to construct a finite automaton 
M = (Q, 

ˬ
, δ, q0, F) that recognizes L = L1 ∪ L2

1

2
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Idea: Run both M1 and M2 at the same time!

Q = pairs of  states, one from M1 and one from M2

= { (q1, q2) | q1 ∈ Q1 and q2 ∈ Q2 }

= Q1 × Q2
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Theorem: The union of  two regular 
languages is also a regular language
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Automaton for Union
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Automaton for Intersection
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Theorem: The union of  two regular 
languages is also a regular language

Corollary: Any finite language is 
regular
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The Regular Operations

Union: A ∪ B = { w | w ∈ A or w ∈ B } 

Intersection: A ∩ B = { w | w ∈ A and w ∈ B } 

Negation: ¬A = { w | w ∉ A } 

Reverse: AR = { w1 …wk | wk …w1 ∈ A }

Concatenation: A ⋅ B = { vw | v ∈ A and w ∈ B }

Star: A* = { w1 …wk | k ≥ 0 and each wi ∈ A }
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Regular Languages Are 
Closed Under The 

Regular Operations

We have seen part of  the proof  for 
Union. The proof  for intersection is very 
similar. The proof  for negation is easy.

Input: Text T of  length t, string S of  length n

The “Grep” Problem

Problem: Does string S appear inside text T?

a1, a2, a3, a4, a5, …, at

NaÏve method: 

Cost: Roughly nt comparisons
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Automata Solution

Build a machine M that accepts any string 
with S as a consecutive substring

Feed the text to M

Cost:

As luck would have it, the Knuth, Morris, 
Pratt algorithm builds M quickly

t comparisons + time to build M

Grep

Coke Machines

Thermostats (fridge)

Elevators

Train Track Switches

Lexical Analyzers for Parsers

Real-life Uses of  DFAs

Are all 
languages 
regular?

i.e., a bunch of  a’s followed by an 
equal number of  b’s

Consider the language L = { anbn | n > 0 }

No finite automaton accepts this language

Can you prove this?
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anbn is not regular.  
No machine has 
enough states to 
keep track of  the 
number of  a’s it 
might encounter

That is a fairly weak 
argument 

Consider the following 
example…

L = strings where the # of  occurrences of  
the pattern ab is equal to the number of  
occurrences of  the pattern ba

Can’t be regular.  No machine has 
enough states to keep track of  the 
number of  occurrences of  ab

M accepts only the strings with an 
equal number of  ab’s and ba’s!
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Let me show you a 
professional strength 
proof that anbn is not 

regular…

Pigeonhole principle:

Given n boxes and m > n 
objects, at least one box 
must contain more than 
one object

Letterbox principle:

If  the average number of  
letters per box is x, then 
some box will have at 
least x letters (similarly, 
some box has at most x)

Theorem:  L= {anbn | n > 0 } is not regular

Proof  (by contradiction):

Assume that L is regular

Then there exists a machine M with k states 
that accepts L

For each 0 ≤ i ≤ k, let Si be the state M is in 
after reading ai

∃i,j ≤ k  such that Si = Sj, but i ≠ j

M will do the same thing on aibi and ajbi 

But a valid M must reject ajbi and accept aibi

Deterministic Finite 

Automata
• Definition

• Testing if  they accept a string

• Building automata

Regular Languages
• Definition

• Closed Under Union,

Intersection, Negation

• Using Pigeonhole Principle to

show language ain’t regular

Here’s What 
You Need to 

Know…


