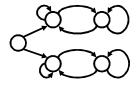
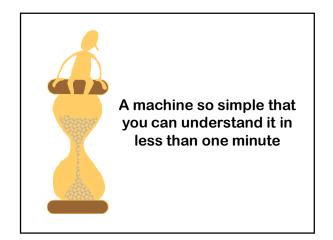
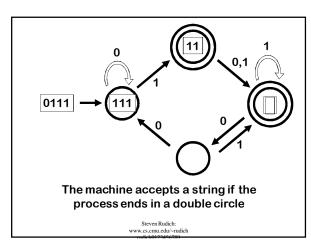
Some 15-251
Great Theoretical Ideas
in Computer Science
for

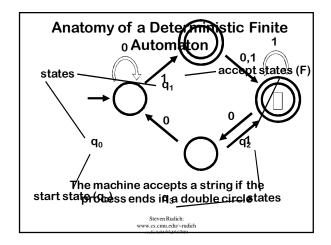
Deterministic Finite Automata

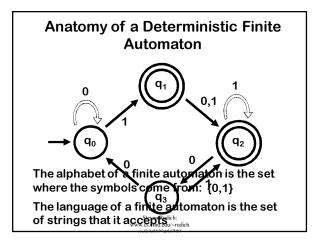
Lecture 5 (January 29, 2008)

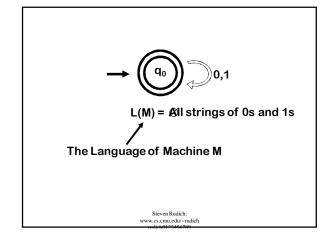


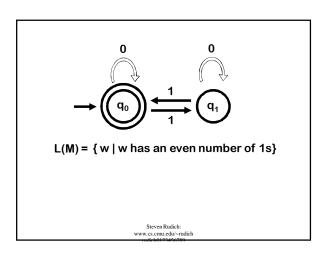












Notation

An alphabet Σ is a finite set (e.g., $\Sigma = \{0,1\}$)

A string over Σ is a finite-length sequence of elements of Σ

For x a string, |x| is the length of x

The unique string of length 0 will be denoted by ϵ and will be called the empty or null string

A language over Σ is a set of strings over Σ

Steven Rudich: www.cs.cmu.edu/~rudich A finite automaton is a 5-tuple M = (Q, Σ , δ , q₀, F)

Q is the set of states

 Σ is the alphabet

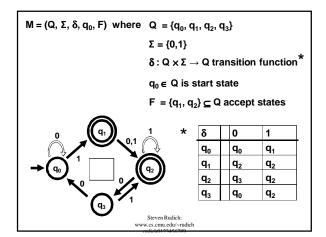
 $\delta: \boldsymbol{Q} \times \boldsymbol{\Sigma} \to \boldsymbol{Q} \ \ \text{is the transition function}$

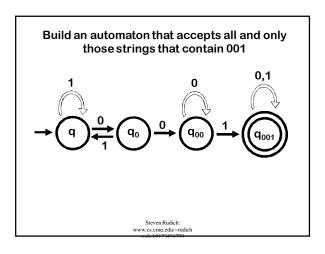
 $q_0 \in Q$ is the start state

 $F \subseteq Q$ is the set of accept states

L(M) = the language of machine M = set of all strings machine M accepts

> Steven Rudich: www.cs.cmu.edu/~rudicl





Build an automaton that accepts all strings whose length is divisible by 2 but not 3

Steven Rudich: www.cs.cmu.edu/~rudich

A language is regular if it is recognized by a deterministic finite automaton

L = { w | w contains 001} is regular

L = { w | w has an even number of 1s} is regular

Steven Rudich: www.cs.cmu.edu/~rudich

Union Theorem

Given two languages, L_1 and L_2 , define the union of L_1 and L_2 as

 $L_1 \cup L_2 \text{ = } \{\, w \mid w \in \, L_1 \text{ or } w \in \, L_2 \,\}$

Theorem: The union of two regular languages is also a regular language

Steven Rudich: www.cs.cmu.edu/~rudich

/ww.cs.cmu.edu/~rudich

Theorem: The union of two regular languages is also a regular language

Proof Sketch: Let

 \mathbf{M}_1 = (Q₁, Σ , δ_1 , q₀¹, F₁) be finite automaton for L₁ and

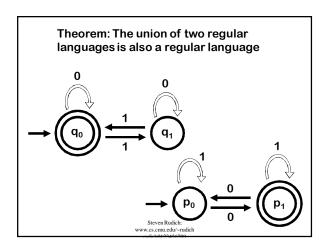
 $M_2 = (Q_2, \Sigma, \delta_2, q_0^2, F_2)$ be finite automaton for L_2

We want to construct a finite automaton M = (Q, Σ , δ , q₀, F) that recognizes L = L₁ \cup L₂

Steven Rudich: www.cs.cmu.edu/~rudich Idea: Run both M_1 and M_2 at the same time!

Q = pairs of states, one from M_1 and one from M_2 = { $(q_1, q_2) | q_1 \in Q_1$ and $q_2 \in Q_2$ } = $Q_1 \times Q_2$

> Steven Rudich: www.cs.cmu.edu/~rudich



Automaton for Union

Steven Rudich: www.cs.cmu.edu/~rudich

www.cs.cmu.edu/~rudich

Theorem: The union of two regular languages is also a regular language

Corollary: Any finite language is regular

Steven Rudich: www.cs.cmu.edu/~rudich

The Regular Operations

Union: $A \cup B = \{ w \mid w \in A \text{ or } w \in B \}$

Intersection: $A \cap B = \{ w \mid w \in A \text{ and } w \in B \}$

Reverse: $A^R = \{ w_1 ... w_k \mid w_k ... w_1 \in A \}$

Negation: $\neg A = \{ w \mid w \notin A \}$

Concatenation: $A \cdot B = \{ vw \mid v \in A \text{ and } w \in B \}$

Star: $A^* = \{ w_1 ... w_k \mid k \ge 0 \text{ and each } w_i \in A \}$

Steven Rudich: www.cs.cmu.edu/~rudich

Regular Languages Are Closed Under The Regular Operations

We have seen part of the proof for Union. The proof for intersection is very similar. The proof for negation is easy.

Steven Rudich: www.cs.cmu.edu/~rudich

The "Grep" Problem

Input: Text T of length t, string S of length n Problem: Does string S appear inside text T? Naïve method:

Cost: Roughly nt comparisons

Automata Solution

Build a machine M that accepts any string with S as a consecutive substring

Feed the text to M

Cost: t comparisons + time to build M

As luck would have it, the Knuth, Morris, Pratt algorithm builds M quickly

Real-life Uses of DFAs

Grep

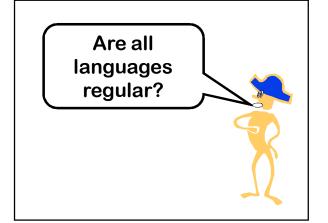
Coke Machines

Thermostats (fridge)

Elevators

Train Track Switches

Lexical Analyzers for Parsers

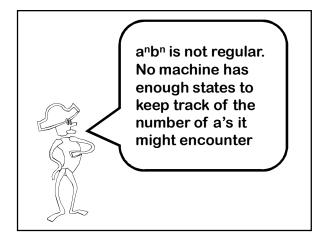


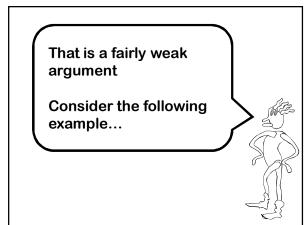
Consider the language L = $\{a^nb^n \mid n > 0\}$

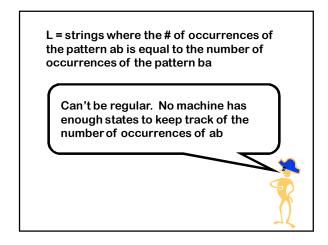
i.e., a bunch of a's followed by an equal number of b's

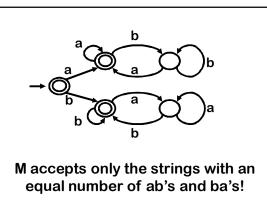
No finite automaton accepts this language

Can you prove this?









Let me show you a professional strength proof that anbn is not regular...

Given n boxes and m > n objects, at least one box must contain more than one object

Letterbox principle:
If the average number of letters per box is x, then some box will have at least x letters (similarly, some box has at most x)

Theorem: L= $\{a^nb^n | n > 0\}$ is not regular

Proof (by contradiction):

Assume that L is regular

Then there exists a machine M with k states that accepts L

For each $0 \le i \le k$, let S_i be the state M is in after reading a^i

 $\exists i,j \le k \text{ such that } S_i = S_i, \text{ but } i \ne j$

M will do the same thing on aibi and aibi

But a valid M must reject aibi and accept aibi

Here's What You Need to Know...

Deterministic Finite Automata

- Definition
- Testing if they accept a string
- Building automata

Regular Languages

- Definition
- Closed Under Union, Intersection, Negation
- Using Pigeonhole Principle to show language ain't regular