15-251

Deterministic
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A machine so simple that
you can understand it in
less than one minute

The machine accepts a stringif the
process ends in a double circle
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Anatomy of a Deterministic Finite
Automaton
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L(M) = All strings of Os and 1s

The Language of Machine M
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L(M)= { w | w has an even number of 1s}
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Notation
An alphabet X is a finite set (e.g., £ = {0,1})

A string over % is a finite-length sequence of
elements of

For x a string, |x| is the length of x

The unique string of length 0 will be denoted
by € and will be called the empty or null string

A language overZ is a set of stringsover
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A finite automaton is a 5-tuple M = (Q, Z, d, q,, F)
Qis the set of states
2 is the alphabet
4:Q@x X — Q is the transition function
qo J Qis the start state
F O Qis the set of accept states

L(M) =the language of machine M
= set of all strings machine M accepts
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M=(Q, £, 8,4, F) where Q ={qo, qy, 5, 3}
£={0,1}

d: Q xZ — Qtransition function®

go O Qs start state

F ={q,, g} O Q accept states
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Build an automaton that accepts all and only
those strings that contain 001
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Build an automaton that accepts all strings
whose length is divisible by 2 but not 3
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A language is regular if it is
recognized by a deterministic
finite automaton

L={w | w contains 001} is regular

L={w | w has an even number of 1s}is regular
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Union Theorem

Giventwo languages, L, and L,, define
theunionof L, and L, as

LiOL,={w|wOL;orwOL,}

Theorem: The union of two regular
languagesiis also a regular language
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Theorem: The union of two regular
languagesiis also a regular language

Proof Sketch: Let

M, =(Q4, %, 5, g3, F,) be finite automaton for L,
and

M;=(Qy, Z, 3y, qﬁ, F,) be finite automaton for L,

We want to construct a finite automaton
M=(Q, %, , q,, F) that recognizesL=L, 0L,
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Idea: Run both M, and M, at the same time!

= pairs of states, one from M, and one from M,
={(a,92) 19, 0Qqand q, 0 Q, }
=Q, xQ,
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Theorem: The union of two regular
languagesiis also a regular language
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Automaton for Union
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Automaton for Intersection
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Theorem: The union of two regular
languagesiis also a regular language

Corollary: Any finite language is
regular
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The Regular Operations
UnionnAOB={w|wOAorw(B}
IntersectiontAnB={w|wOAandw(B}
Reverse: AR={w,..w, |w,..w,; 0A}
Negation:-A={w|wA}
Concatenation:A(B={vw|vOAandw(B}

Star: A*={w,..w,|k>0andeachw; A}
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Regular Languages Are
Closed Under The
Regular Operations
We have seen part of the proof for

Union. The proof for intersectionis very
similar. The proof for negation is easy.
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The “Grep” Problem

Input: Text T of length t, string S of length n
Problem: Does string S appear inside text T?
Naive method:

Cost: Roughly nt comparisons




Automata Solution

Build a machine M that accepts any string
with S as a consecutive substring

Feed thetextto M
Cost: t comparisons + time to build M

As luck would have it, the Knuth, Morris,
Pratt algorithm builds M quickly

Real-life Uses of DFAs

Grep

Coke Machines
Thermostats (fridge)
Elevators

Train Track Switches

Lexical Analyzers for Parsers

Are all
languages

regular? ﬁ

Considerthe languageL ={a"b"|n>0}

i.e., abunch of a’s followed by an
equal number of b’s

No finite automaton accepts this language

Can you prove this?
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a"b" is not regular.
No machine has
enough states to
keep track of the
@ number of a’s it

might encounter

f

That is a fairly weak
argument

Consider the following ﬁ.
example...

\_

L = strings where the # of occurrences of
the pattern ab is equal to the number of
occurrences of the pattern ba

Can’tbe regular. No machine has
enough states to keep track of the
number of occurrences of ab

e

M accepts only the strings with an
equal nhumber of ab’s and ba’s!




Let me show you a
professional strength
proof that a"b" is not

regular... ﬁ

Pigeonhole principle:

Givenn boxesandm>n
objects, at least one box
must contain more than

one object

Letterbox principle:

If the average number of
letters per box is x, then
some box will have at
least x letters (similarly,
some box has at most x)

Theorem: L={a"b"| n>0}is notregular
Proof (by contradiction):
AssumethatL is regular

Then there exists a machine M with k states
that accepts L

Foreach 0<i<k,letS, be the state Misin
after reading a

O,j<k suchthatS;=S§;, buti#j
M will do the same thing on aib'and aib’

But a valid M mustreject aib' and accept a'b’

Here’s What
You Need to
Know...

Deterministic Finite

Automata

* Definition

* Testing if they accept a string
* Building automata

Regular Languages

* Definition

¢ Closed Under Union,
Intersection, Negation

* Using Pigeonhole Principle to
show language ain’t regular




