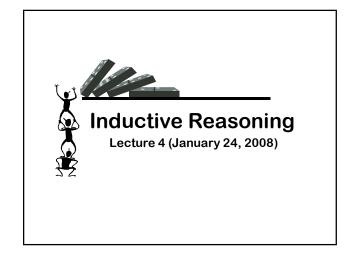
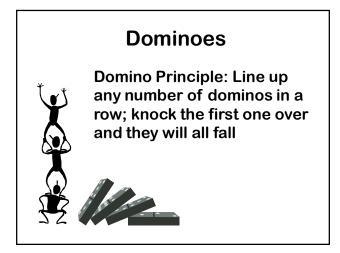
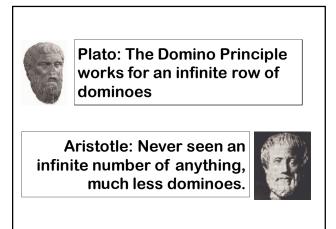
Some 15-251
Great Theoretical Ideas
in Computer Science
for







Plato's Dominoes One for each natural number

Theorem: An infinite row of dominoes, one domino for each natural number. Knock over the first domino and they all will fall

Suppose they don't all fall. Let k > 0 be the lowest numbered domino that remains standing. Domino $k-1 \ge 0$ did fall, but k-1 will knock over domino k. Thus, domino k must fall and remain standing. Contradiction.

Mathematical Induction

statements proved instead of dominoes fallen

Infinite sequence of dominoes

Infinite sequence of statements: $S_0, S_1, ...$

 F_k = "domino k fell"

 $F_k = "S_k proved"$

Establish: 1. F₀

2. For all k, $F_k \Rightarrow F_{k+1}$

Conclude that Fk is true for all k

Inductive Proofs

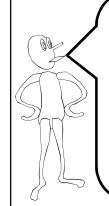
To Prove $\forall k \in N, S_k$

Establish "Base Case": S₀

Establish that $\forall k, S_k \Rightarrow S_{k+1}$

$$\forall k, S_k \Rightarrow S_{k+1}$$

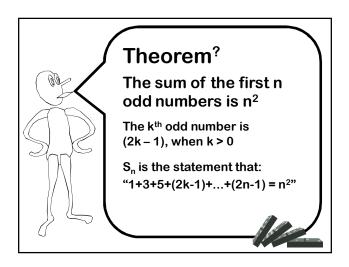
 $\forall k, S_k \Rightarrow S_{k+1} \quad \begin{cases} \text{ Assume hypothetically that } \\ S_k \text{ for any particular } k; \\ \text{ Conclude that } S_{k+1} \end{cases}$

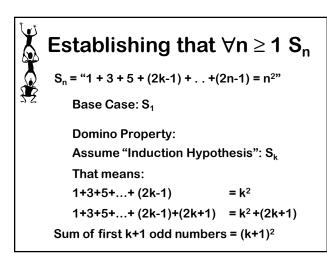


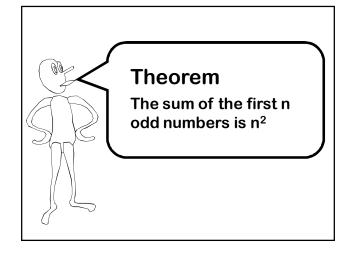
Theorem?

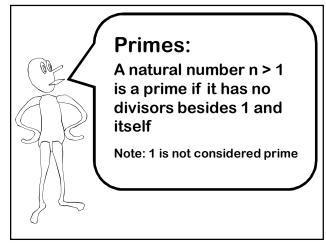
The sum of the first n odd numbers is n²

Check on small values:









Theorem?

Every natural number > 1 can be factored into primes

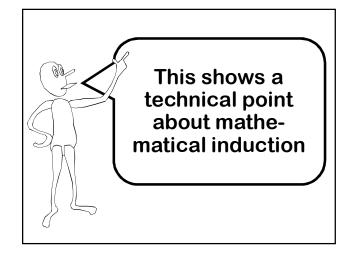
 S_n = "n can be factored into primes"

Base case: 2 is prime \Rightarrow S₂ is true

How do we use the fact:

S_{k-1} = "k-1 can be factored into primes" to prove that:

S_k = "k can be factored into primes"



A different approach:

Assume 2,3,...,k-1 all can be factored into primes

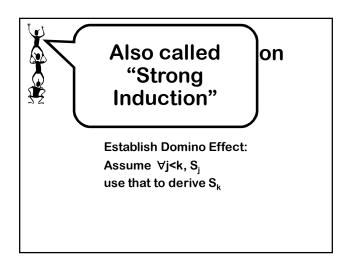
Then show that k can be factored into primes

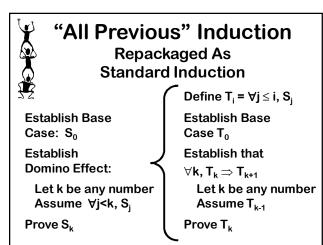
All Previous Induction

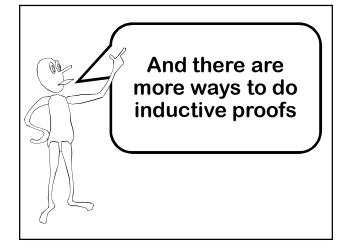
To Prove $\forall k, S_k$

Establish Base Case: S₀

Establish Domino Effect: Assume ∀j<k, S_j use that to derive S_k







Method of Infinite Descent

Rene Descartes

Show that for any counterexample you find a smaller one

If a counter-example exists there would be an infinite sequence of smaller and smaller counter examples

Theorem:

Every natural number > 1 can be factored into primes

Let n be a counter-example

Hence n is not prime, so n = ab

If both a and b had prime factorizations, then n would too

Thus a or b is a smaller counter-example

Yet another way of packaging inductive reasoning is to define "invariants"

Invariant (n):

- 1. Not varying; constant.
- Mathematics. Unaffected by a designated operation, as a transformation of coordinates.

Invariant (n):

3. Programming. A rule, such as the ordering of an ordered list, that applies throughout the life of a data structure or procedure. Each change to the data structure maintains the correctness of the invariant

Invariant Induction

Suppose we have a time varying world state: W_0 , W_1 , W_2 , ...

Each state change is assumed to come from a list of permissible operations. We seek to prove that statement S is true of all future worlds

Argue that S is true of the initial world

Show that if S is true of some world – then S remains true after one permissible operation is performed

Odd/Even Handshaking Theorem

At any party at any point in time define a person's parity as ODD/EVEN according to the number of hands they have shaken

Statement: The number of people of odd parity must be even

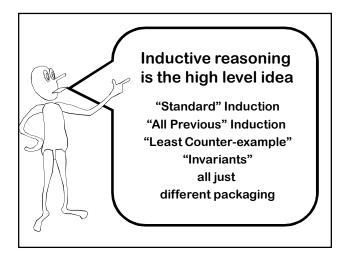
Statement: The number of people of odd parity must be even

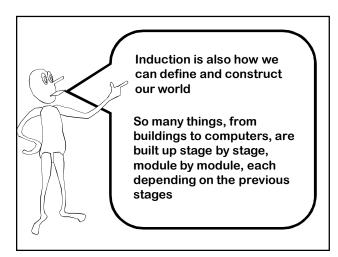
Initial case: Zero hands have been shaken at the start of a party, so zero people have odd parity

Invariant Argument:

If 2 people of the same parity shake, they both change and hence the odd parity count changes by 2 – and remains even

If 2 people of different parities shake, then they both swap parities and the odd parity count is unchanged





Inductive Definition

Example

Initial Condition, or Base Case:

F(0) = 1

Inductive definition of the powers of 2!

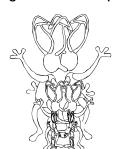
Inductive Rule:

For n > 0, F(n) = F(n-1) + F(n-1)

n	0	1	2	3	4	5	6	7
F(n)	1	2	4	8	16	32	64	128

Leonardo Fibonacci

In 1202, Fibonacci proposed a problem about the growth of rabbit populations



Rabbit Reproduction

A rabbit lives forever

The population starts as single newborn pair

Every month, each productive pair begets a new pair which will become productive after 2 months old

 F_n = # of rabbit pairs at the beginning of the n^{th} month

month	1	2	3	4	5	6	7
rabbits	1	1	2	3	5	8	13

Fibonacci Numbers

month	1	2	3	4	5	6	7
rabbits	1	1	2	3	5	8	13

Stage 0, Initial Condition, or Base Case:

Fib(1) = 1; Fib(2) = 1

Inductive Rule:

For n>3, Fib(n) = Fib(n-1) + Fib(n-2)

Example

$$T(1) = 1$$

$$T(n) = 4T(n/2) + n$$

Notice that T(n) is inductively defined only for positive powers of 2, and undefined on other values

$$T(1) = 1$$
 $T(2) = 6$ $T(4) = 28$ $T(8) = 120$

Guess a closed-form formula for T(n)

Guess: $G(n) = 2n^2 - n$

Inductive Proof of Equivalence

Base Case: G(1) = 1 and T(1) = 1

Induction Hypothesis:

$$T(x) = G(x)$$
 for $x < n$

Hence:
$$T(n/2) = G(n/2) = 2(n/2)^2 - n/2$$

$$T(n) = 4 T(n/2) + n$$

$$= 4 G(n/2) + n$$

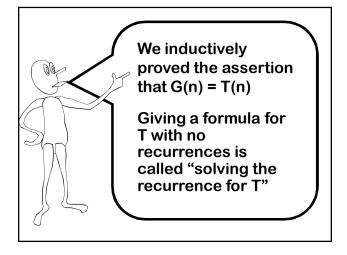
$$= 4 [2(n/2)^2 - n/2] + n$$

$$= 2n^2 - 2n + n$$

$$G(n) = 2n^2 - n$$

$$T(1) = 1$$

$$T(n) = 4T(n/2) + n$$



Technique 2

Guess Form, Calculate Coefficients

$$T(1) = 1$$
, $T(n) = 4 T(n/2) + n$

Guess:
$$T(n) = an^2 + bn + c$$

for some a,b,c

Calculate: T(1) = 1, so a + b + c = 1

$$T(n) = 4 T(n/2) + n$$

 $an^2 + bn + c = 4 [a(n/2)^2 + b(n/2) + c] + n$

(b+1)n + 3c = 0

Therefore: b = -1 c = 0 a = 2

The Lindenmayer Game

Alphabet: {a,b} Start word: a Productions Rules:

Sub(a) = ab Sub(b) = a

 $NEXT(w_1 w_2 \dots w_n) =$

 $Sub(w_1) Sub(w_2) ... Sub(w_n)$

Time 1: a

Time 2: ab How long are the strings at time n?

Time 4: abaab FIBONACCI(n)

Time 5: abaababa

The Koch Game

Alphabet: { F, +, - }

Start word: F

Productions Rules: Sub(F) = F+F--F+F

Sub(+) = +

Sub(-) = -

 $NEXT(w_1 w_2 \dots w_n) =$

 $Sub(w_1) Sub(w_2) ... Sub(w_n)$

Time 0: F

Time 1: F+F--F+F

Time 2: F+F--F+F+F+F--F+F--F+F

The Koch Game

Visual representation:

F draw forward one unit

+ turn 60 degree left

- turn 60 degrees right

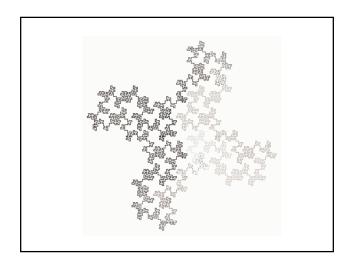
The Koch Game

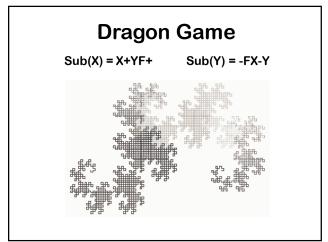
Visual representation:

F draw forward one unit

+ turn 60 degree left

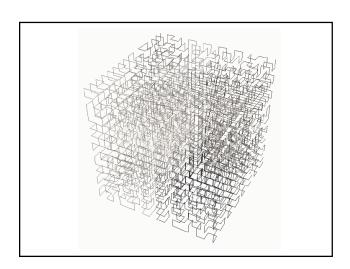
- turn 60 degrees right

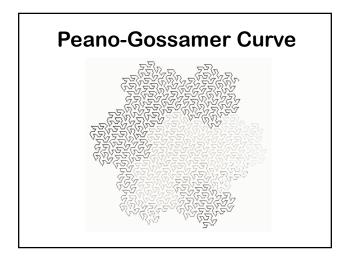


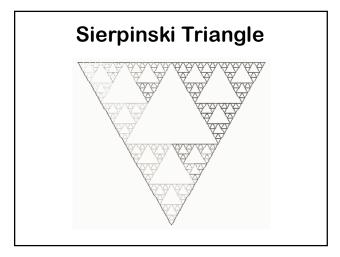


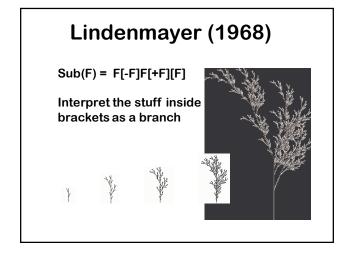
Sub(L) = +RF-LFL-FR+ Sub(R) = -LF+RFR+FL-

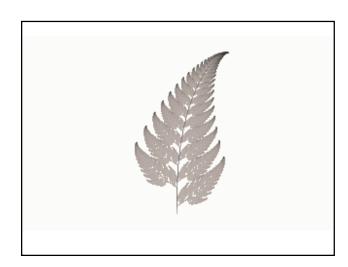
Note: Make 90 degree turns instead of 60 degrees

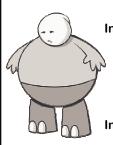












Here's What You Need to

Know...

Inductive Proof
Standard Form
All Previous Form
Least-Counter Example Form
Invariant Form

Inductive Definition
Recurrence Relations
Fibonacci Numbers

Guess and Verify