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Review: Cantor’s Legacy 
Turing’s Legacy: 

The Limits Of Computation.

Carnegie Mellon UniversityApr 25, 2006Lecture 26

CS 15-251       Spring 2006S. Rudich

V. Adamchik

Great Theoretical Ideas In Computer Science

Anything

says is false!

Review: infinite sets

Cantor’s Definition (1874):
Two sets are defined to have the

same size
if and only if they can be

placed into 1-1 onto correspondence.

Review: infinite sets

Cantor’s Definition (1874):

Two sets are defined to have the

same cardinality

if and only if they can be

placed into 1-1 onto correspondence.

Continuum Hypothesis

ℵ1 = 2
ℵ0

There are no infinite sets between 

���� and ����

Warm-up Problem

Consider all polynomials 
with integer 
coefficients.

What is the cardinality of 
this set?

Warm-up Problem

Consider all polynomials 
with rational 
coefficients.

What is the cardinality of 
this set?
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Problem

Consider the algebraic
numbers.

What is the cardinality of 
this set?

Problem

Consider the 
transcendental numbers.

What is the cardinality of 
this set?

“I see it, but I don't believe it”

�n can be put in 

1-1 correspondence with [0,1].

Cantor’s set

Tiny sets (measure zero) with 
uncountably many points

Cantor’s set

Cantor Set is formed by repeatedly 
cutting out middle thirds of a line 

segment: 

Cantor’s set

What remains is called the Cantor set

How much did we remove? 

What is the size of the Cantor set?
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Cantor’s set

How much did we remove? 

Cantor’s set

Thinking of the size as a length, we 
removed everything. 

Therefore, the Cantor set is very tiny.

Cantor’s set

On the other hand, the Cantor set is 
not empty, since we did not remove the 

end points

0, 1, 1/3, 2/3,…

Cantor’s set

We will show that the 
Cantor set is the big as 
the whole interval (0,1).

Cantor’s set

We remove all the ternary decimals with 1 in 
the decimal place.
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Cantor’s set

The Cantor set is a set of numbers  
whose ternary decimal representations 

consist entirely of 0’s and 2’s.
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Problem

Does 1/12 belong to the 
Cantor set?

Cantor’s set

Can you find a 1-1 map between  
{0,1} and the Cantor set?

Cantor’s set

The one-to-one map between  {0,1} and 
the Cantor set is called the “Devil's 
Staircase” .

To see this bijection, take a number 
from the Cantor set in ternary 
notation, divide its digits by 2, and you 
get all coefficients in binary notation.

A little bit further

Mathematically speaking the base 
is not necessarily an integer
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c
dust Cantor's

Turing’s Legacy:

Anything

says is false!

Turing’s Legacy:

A problem is a yes/no question.

An algorithm is a solution to a problem 
if it correctly provides the appropriate 
yes/no answer to the problem.

A problem is decidable if it has a 
solution. 
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Turing’s Legacy:

Are all problems decidable? 

Decidable and Computable

Subset S of Σ* ⇔ Function fS

x in S ⇔ fS(x) = 1
x not in S ⇔ fS(x) = 0

Set S is decidable ⇔ function fS is 
computable

Sets are “decidable” (or undecidable), 
whereas

functions are “computable” (or not)

The HELLO assignment

Write a JAVA program to output the word 
“HELLO” on the screen and halt.

Space and time are not an issue. 
The program is for an ideal computer. 

PASS for any working HELLO .
No partial credit.

Grading Script

The grading script G must be able to 
take any Java program P and grade it.

Pass, if P prints only the word                     
G(P)=          “HELLO” and halts.

Fail, otherwise.

How exactly might such a script work?

What kind of program 
could a student who 
hated his/her TA 

hand in?

Nasty Program

n:=0;

while (n is not a counter-example 
to the Riemann Hypothesis) {

n++;

}

print “Hello”;

The nasty program is a PASS if and only if the
Riemann Hypothesis is true.
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Despite the simplicity of 
the HELLO assignment, 
there is no program to 
correctly grade it! 

And we will prove this.

The theory of what can 
and can’t be computed by 
an ideal computer is 

called 
Computability Theory
or Recursion Theory. 

Are all reals describable?
Are all reals computable?

We saw that
computable ⇒ describable, 

but do we also have
describable ⇒ computable?

NO

NO

From Lecture 25:

The “grading function” we just described
is not computable! (We’ll see a proof soon.)

Computable Function

Fix any finite set of symbols, Σ. 
Fix any precise programming language, e.g., Java. 

Σ∗ = All finite strings of symbols from Σ 
including the empty string ε

A program is any finite string of characters that is 
syntactically valid.

A function f : Σ*→Σ* is computable if there is a 
program P that when executed on an ideal computer, 
computes f. 

Theorem: Every infinite subset S 
of Σ* is countable

Proof: 

Sort S by first by length and then 
alphabetically. 

Map the first word to 0, the second 
to 1, and so on….

There are only 
countably many Java 

programs. 

Hence, there are only 
countably many

computable functions.
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Uncountably many functions

The functions f: Σ* → {0,1} are in 
1-1 onto correspondence with the 
subsets of Σ* (the powerset of Σ* ).

Subset S of Σ* ⇔ Function fS

x in S ⇔ fS(x) = 1
x not in S ⇔ fS(x) = 0

Uncountably many functions

The functions f: Σ* → {0,1} are in 
1-1 onto correspondence with the 
subsets of Σ* (the powerset of Σ* ).

Hence, the set of all f: Σ* → {0,1} has the
same size as the power set of Σ*. 

And since Σ* is countably infinite, its 
power set is uncountably infinite.

Countably many 
computable functions.

Uncountably many
functions from Σ* to {0,1}.

Thus, most functions 
from Σ* to {0,1} are not 

computable. 

Can we explicitly 
describe an incomputable 

function?  

Can we describe an 
interesting incomputable 

function?

Notation And Conventions

Fix a single programming language (Java)

When we write program P we are talking 
about the text of the source code for P

P(x) means the output that arises from 
running program P on input x, assuming 
that P eventually halts.

The meaning of P(P)

It follows from our conventions that 
P(P) means the output obtained when 
we run P on the text of its own source 
code.
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P(P) … So that’s what I look like The Halting Set K

Definition:
K is the set of all programs P such that 
P(P) halts.

K = { Java P | P(P) halts }

The Halting Problem
K = {P | P(P) halts }

Is there a program HALT such that:

HALT(P) =     yes, if P∈K
HALT(P) =     no,   if P∉K

HALT decides whether or not any given 
program is in K. 

THEOREM: There is no program to 
solve the halting problem
(Alan Turing, 1937)

Suppose a program HALT existed that solved 
the halting problem.

We will call HALT as a subroutine in a new 
program called CONFUSE. 

CONFUSE

boolean CONFUSE(P)

{  

if (HALT(P) == True) 

then loop forever;

else return True;

}

Does CONFUSE(CONFUSE) halt?

Does CONFUSE(CONFUSE) halt?

boolean CONFUSE(P)

{  

if (HALT(P) == True) 

then loop forever;

else return True;

}

Consider both cases

1. CONFUSE(CONFUSE) halts then (by 
def.) HALT(CONFUSE) is True. 

But then CONFUSE will loop forever.
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Does CONFUSE(CONFUSE) halt?

boolean CONFUSE(P)
{  
if (HALT(P) == True) 
then loop forever;

else return True;
}

Consider both cases
2. CONFUSE(CONFUSE) runs forever 
then (by def.) HALT(CONFUSE) is 
False. 

But then CONFUSE halts.

Alan Turing (1912-1954)

Theorem: [1937]

There is no program to 
solve the halting 

problem

Turing’s argument is 
essentially the 

reincarnation of Cantor’s 
Diagonalization argument

that we saw 
in the previous lecture.

P2 …

P1

…PjP1P0

…

Pi

…

P0

A
ll 
Pr
og
ra
m
s

All Programs (the input)

Programs (computable functions) are countable,
so we can put them in a (countably long) list

P2 …

P1

…PjP1P0

…

Pi

…

P0

YES, if Pi(Pj) halts
No,      otherwise

A
ll 
Pr
og
ra
m
s

All Programs (the input)

…

P2

di

…

d1P1

…PjP1P0

……

Pi

…

d0P0

CONFUSE(Pi) halts iff di = no
(The CONFUSE function is the negation of the diagonal.)

Hence CONFUSE cannot be on this list.

Let
di = HALT(Pi) 

A
ll 
Pr
og
ra
m
s

All Programs (the input)
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Is there a real 
number that can be 
described, but not 

computed?

From last lecture:

Consider the real 
number RK whose 
binary expansion 
has a 1 in the 

jth position iff  Pj∈∈∈∈∈∈∈∈K
(i.e., if the jth

program halts).

Proof that RK cannot be computed

Suppose it is, and program FRED computes it.

then consider the following program:

MYSTERY(program text P)

for j = 0 to forever do {

if (P == Pj) 

then use FRED to compute jth bit of RK
return YES if (bit == 1), NO if (bit == 0)

}

MYSTERY solves the halting problem!

Self-Reference Puzzle

Write a program that prints itself out 
as output. No calls to the operating 
system, or to memory external to the 
program.

HW: Auto Cannibal Maker

Write a program AutoCannibalMaker
that takes the text of a program EAT 
as input and outputs a program called 
SELFEAT. 

When SELFEAT is executed, 
it should output EAT(SELFEAT)

Suppose HALT with no input was 
programmable in JAVA.

Write a program AutoCannibalMaker that takes 
the text of a program EAT as input and outputs a 
program called SELFEAT. 

When SELFEAT is executed it should output 
EAT(SELFEAT)

Let EAT(P) = halt, if P does not halt
loop forever, otherwise.

What does SELFEAT do?

Contradiction! Hence EAT does not have 
a corresponding JAVA program.


