
1

Review: Cantor’s Legacy
Turing’s Legacy:

The Limits Of Computation.

Carnegie Mellon UniversityApr 25, 2006Lecture 26

CS 15-251 Spring 2006S. Rudich

V. Adamchik

Great Theoretical Ideas In Computer Science

Anything

says is false!

Review: infinite sets

Cantor’s Definition (1874):
Two sets are defined to have the

same size
if and only if they can be

placed into 1-1 onto correspondence.

Review: infinite sets

Cantor’s Definition (1874):

Two sets are defined to have the

same cardinality

if and only if they can be

placed into 1-1 onto correspondence.

Continuum Hypothesis

ℵ1 = 2
ℵ0

There are no infinite sets between

���� and ����

Warm-up Problem

Consider all polynomials
with integer
coefficients.

What is the cardinality of
this set?

Warm-up Problem

Consider all polynomials
with rational
coefficients.

What is the cardinality of
this set?

2

Problem

Consider the algebraic
numbers.

What is the cardinality of
this set?

Problem

Consider the
transcendental numbers.

What is the cardinality of
this set?

“I see it, but I don't believe it”

�n can be put in

1-1 correspondence with [0,1].

Cantor’s set

Tiny sets (measure zero) with
uncountably many points

Cantor’s set

Cantor Set is formed by repeatedly
cutting out middle thirds of a line

segment:

Cantor’s set

What remains is called the Cantor set

How much did we remove?

What is the size of the Cantor set?

3

Cantor’s set

How much did we remove?

Cantor’s set

Thinking of the size as a length, we
removed everything.

Therefore, the Cantor set is very tiny.

Cantor’s set

On the other hand, the Cantor set is
not empty, since we did not remove the

end points

0, 1, 1/3, 2/3,…

Cantor’s set

We will show that the
Cantor set is the big as
the whole interval (0,1).

Cantor’s set

We remove all the ternary decimals with 1 in
the decimal place.

()

()

()33

33

33

0.22 ,0.21
9

8
,

9

7

0.02 ,0.01
9

2
,

9

1

0.2 ,0.1
3

2
,
3

1

⇒








⇒








⇒








Cantor’s set

The Cantor set is a set of numbers
whose ternary decimal representations

consist entirely of 0’s and 2’s.

4

Problem

Does 1/12 belong to the
Cantor set?

Cantor’s set

Can you find a 1-1 map between
{0,1} and the Cantor set?

Cantor’s set

The one-to-one map between {0,1} and
the Cantor set is called the “Devil's
Staircase” .

To see this bijection, take a number
from the Cantor set in ternary
notation, divide its digits by 2, and you
get all coefficients in binary notation.

A little bit further

Mathematically speaking the base
is not necessarily an integer

∑

∑

∞

=

∞

=

↔

↔

1k

k
k

1k
k
k

bctionGeneraliza

3

c
dust Cantor's

Turing’s Legacy:

Anything

says is false!

Turing’s Legacy:

A problem is a yes/no question.

An algorithm is a solution to a problem
if it correctly provides the appropriate
yes/no answer to the problem.

A problem is decidable if it has a
solution.

5

Turing’s Legacy:

Are all problems decidable?

Decidable and Computable

Subset S of Σ* ⇔ Function fS

x in S ⇔ fS(x) = 1
x not in S ⇔ fS(x) = 0

Set S is decidable ⇔ function fS is
computable

Sets are “decidable” (or undecidable),
whereas

functions are “computable” (or not)

The HELLO assignment

Write a JAVA program to output the word
“HELLO” on the screen and halt.

Space and time are not an issue.
The program is for an ideal computer.

PASS for any working HELLO .
No partial credit.

Grading Script

The grading script G must be able to
take any Java program P and grade it.

Pass, if P prints only the word
G(P)= “HELLO” and halts.

Fail, otherwise.

How exactly might such a script work?

What kind of program
could a student who
hated his/her TA

hand in?

Nasty Program

n:=0;

while (n is not a counter-example
to the Riemann Hypothesis) {

n++;

}

print “Hello”;

The nasty program is a PASS if and only if the
Riemann Hypothesis is true.

6

Despite the simplicity of
the HELLO assignment,
there is no program to
correctly grade it!

And we will prove this.

The theory of what can
and can’t be computed by
an ideal computer is

called
Computability Theory
or Recursion Theory.

Are all reals describable?
Are all reals computable?

We saw that
computable ⇒ describable,

but do we also have
describable ⇒ computable?

NO

NO

From Lecture 25:

The “grading function” we just described
is not computable! (We’ll see a proof soon.)

Computable Function

Fix any finite set of symbols, Σ.
Fix any precise programming language, e.g., Java.

Σ∗ = All finite strings of symbols from Σ
including the empty string ε

A program is any finite string of characters that is
syntactically valid.

A function f : Σ*→Σ* is computable if there is a
program P that when executed on an ideal computer,
computes f.

Theorem: Every infinite subset S
of Σ* is countable

Proof:

Sort S by first by length and then
alphabetically.

Map the first word to 0, the second
to 1, and so on….

There are only
countably many Java

programs.

Hence, there are only
countably many

computable functions.

7

Uncountably many functions

The functions f: Σ* → {0,1} are in
1-1 onto correspondence with the
subsets of Σ* (the powerset of Σ*).

Subset S of Σ* ⇔ Function fS

x in S ⇔ fS(x) = 1
x not in S ⇔ fS(x) = 0

Uncountably many functions

The functions f: Σ* → {0,1} are in
1-1 onto correspondence with the
subsets of Σ* (the powerset of Σ*).

Hence, the set of all f: Σ* → {0,1} has the
same size as the power set of Σ*.

And since Σ* is countably infinite, its
power set is uncountably infinite.

Countably many
computable functions.

Uncountably many
functions from Σ* to {0,1}.

Thus, most functions
from Σ* to {0,1} are not

computable.

Can we explicitly
describe an incomputable

function?

Can we describe an
interesting incomputable

function?

Notation And Conventions

Fix a single programming language (Java)

When we write program P we are talking
about the text of the source code for P

P(x) means the output that arises from
running program P on input x, assuming
that P eventually halts.

The meaning of P(P)

It follows from our conventions that
P(P) means the output obtained when
we run P on the text of its own source
code.

8

P(P) … So that’s what I look like The Halting Set K

Definition:
K is the set of all programs P such that
P(P) halts.

K = { Java P | P(P) halts }

The Halting Problem
K = {P | P(P) halts }

Is there a program HALT such that:

HALT(P) = yes, if P∈K
HALT(P) = no, if P∉K

HALT decides whether or not any given
program is in K.

THEOREM: There is no program to
solve the halting problem
(Alan Turing, 1937)

Suppose a program HALT existed that solved
the halting problem.

We will call HALT as a subroutine in a new
program called CONFUSE.

CONFUSE

boolean CONFUSE(P)

{

if (HALT(P) == True)

then loop forever;

else return True;

}

Does CONFUSE(CONFUSE) halt?

Does CONFUSE(CONFUSE) halt?

boolean CONFUSE(P)

{

if (HALT(P) == True)

then loop forever;

else return True;

}

Consider both cases

1. CONFUSE(CONFUSE) halts then (by
def.) HALT(CONFUSE) is True.

But then CONFUSE will loop forever.

9

Does CONFUSE(CONFUSE) halt?

boolean CONFUSE(P)
{
if (HALT(P) == True)
then loop forever;

else return True;
}

Consider both cases
2. CONFUSE(CONFUSE) runs forever
then (by def.) HALT(CONFUSE) is
False.

But then CONFUSE halts.

Alan Turing (1912-1954)

Theorem: [1937]

There is no program to
solve the halting

problem

Turing’s argument is
essentially the

reincarnation of Cantor’s
Diagonalization argument

that we saw
in the previous lecture.

P2 …

P1

…PjP1P0

…

Pi

…

P0

A
ll
Pr
og
ra
m
s

All Programs (the input)

Programs (computable functions) are countable,
so we can put them in a (countably long) list

P2 …

P1

…PjP1P0

…

Pi

…

P0

YES, if Pi(Pj) halts
No, otherwise

A
ll
Pr
og
ra
m
s

All Programs (the input)

…

P2

di

…

d1P1

…PjP1P0

……

Pi

…

d0P0

CONFUSE(Pi) halts iff di = no
(The CONFUSE function is the negation of the diagonal.)

Hence CONFUSE cannot be on this list.

Let
di = HALT(Pi)

A
ll
Pr
og
ra
m
s

All Programs (the input)

10

Is there a real
number that can be
described, but not

computed?

From last lecture:

Consider the real
number RK whose
binary expansion
has a 1 in the

jth position iff Pj∈∈∈∈∈∈∈∈K
(i.e., if the jth

program halts).

Proof that RK cannot be computed

Suppose it is, and program FRED computes it.

then consider the following program:

MYSTERY(program text P)

for j = 0 to forever do {

if (P == Pj)

then use FRED to compute jth bit of RK
return YES if (bit == 1), NO if (bit == 0)

}

MYSTERY solves the halting problem!

Self-Reference Puzzle

Write a program that prints itself out
as output. No calls to the operating
system, or to memory external to the
program.

HW: Auto Cannibal Maker

Write a program AutoCannibalMaker
that takes the text of a program EAT
as input and outputs a program called
SELFEAT.

When SELFEAT is executed,
it should output EAT(SELFEAT)

Suppose HALT with no input was
programmable in JAVA.

Write a program AutoCannibalMaker that takes
the text of a program EAT as input and outputs a
program called SELFEAT.

When SELFEAT is executed it should output
EAT(SELFEAT)

Let EAT(P) = halt, if P does not halt
loop forever, otherwise.

What does SELFEAT do?

Contradiction! Hence EAT does not have
a corresponding JAVA program.

