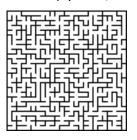
Random Walks

Lecture 24 (April 13, 2006)



Probability Refresher

What does this mean: E[X | Y]?

Is this true:

 $Pr[A] = Pr[A|B]Pr[B] + Pr[A|\overline{B}]Pr[\overline{B}]$

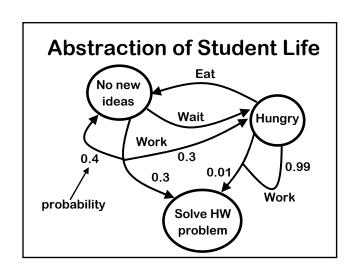
Yes!

Similarly:

 $E[X] = E[X|Y] Pr[Y] + E[X|\overline{Y}] Pr[\overline{Y}]$

Today, we will learn an important lesson:

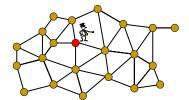
How to walk drunk home



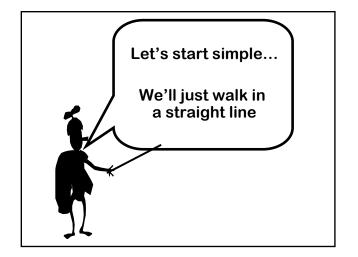
Like finite automata, but instead of a determinisic or non-deterministic action, we have a probabilistic action

Example questions: "What is the probability of reaching goal on string Work, Eat, Work?"

Simpler: Random Walks on Graphs



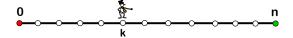
At any node, go to one of the neighbors of the node with equal probability



Random Walk on a Line

You go into a casino with \$k, and at each time step, you bet \$1 on a fair game

You leave when you are broke or have \$n



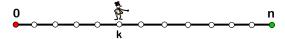
Question 1: what is your expected amount of money at time t?

Let X_t be a R.V. for the amount of \$\$\$ at time t

Random Walk on a Line

You go into a casino with \$k, and at each time step, you bet \$1 on a fair game

You leave when you are broke or have \$n



 $X_t = k + \delta_1 + \delta_2 + \dots + \delta_t$

(δ_i is RV for change in your money at time i)

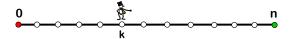
 $E[\delta_i] = 0$

So, $E[X_t] = k$

Random Walk on a Line

You go into a casino with \$k, and at each time step, you bet \$1 on a fair game

You leave when you are broke or have \$n



Question 2: what is the probability that you leave with \$n?

Random Walk on a Line

Question 2: what is the probability that you leave with \$n?

 $E[X_i] = k$

$$\mathsf{E}[\mathsf{X}_\mathsf{t}] = \mathsf{E}[\mathsf{X}_\mathsf{t}|\;\mathsf{X}_\mathsf{t} = 0] \times \mathsf{Pr}(\mathsf{X}_\mathsf{t} = 0)$$

+
$$E[X_t \mid X_t = n] \times Pr(X_t = n)$$

+
$$E[X_t | neither] \times Pr(neither)$$

$$E[X_t] = 0 + n \times Pr(X_t = n)$$

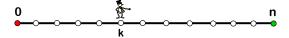
+ (something,) × Pr(neither)

As $t \to \infty$, Pr(neither) $\to 0$, also something_t < n Hence Pr($X_t = n$) $\to k/n$

Another Way To Look At It

You go into a casino with \$k, and at each time step, you bet \$1 on a fair game

You leave when you are broke or have \$n

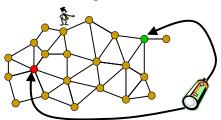


Question 2: what is the probability that you leave with \$n?

= probability that I hit green before I hit red

Random Walks and Electrical Networks

What is chance I reach green before red?



Same as voltage if edges are resistors and we put 1-volt battery between green and red

Random Walks and Electrical Networks

 p_x = Pr(reach green first starting from x)

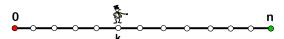
 p_{green} = 1, p_{red} = 0

And for the rest p_x = Average $_{y \in Nbr(x)}(p_y)$ Same as equations for voltage if edges all have same resistance!

Another Way To Look At It

You go into a casino with \$k, and at each time step, you bet \$1 on a fair game

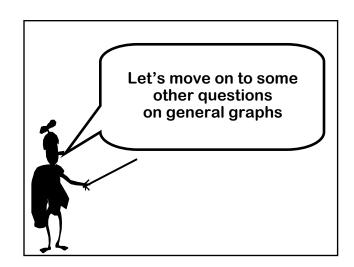
You leave when you are broke or have \$n

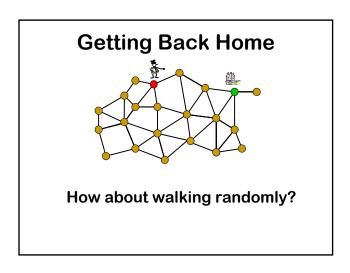


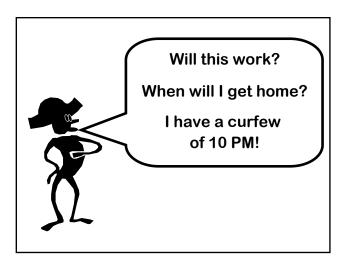
Question 2: what is the probability that you leave with \$n?

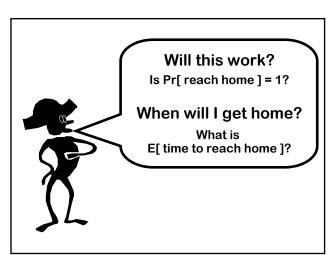
voltage(k) = k/n

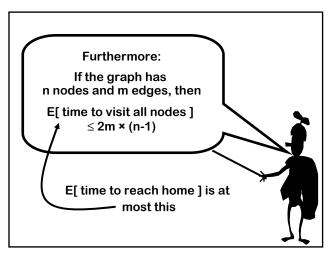
= Pr[hitting n before 0 starting at k] !!!











Cover Times

Let us define a couple of useful things:

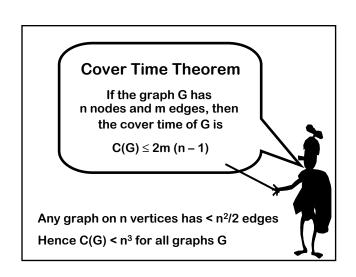
Cover time (from u)

 C_u = E [time to visit all vertices | start at u]

Cover time of the graph

 $C(G) = max_u \{ C_u \}$

(worst case expected time to see all vertices)



We Will Eventually Get Home

Look at the first n steps

There is a non-zero chance p₁ that we get home

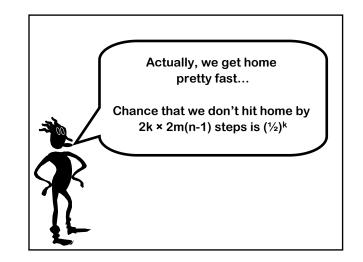
Also, $p_1 \ge (1/n)^n$

Suppose we fail

Then, wherever we are, there is a chance p₂ \geq (1/n)ⁿ that we hit home in the next n steps from there

Probability of failing to reach home by time kn

=
$$(1 - p_1)(1 - p_2)$$
 ... $(1 - p_k) \rightarrow 0$ as $k \rightarrow \infty$



A Simple Calculation

True of False:

If the average income of people is \$100 then more than 50% of the people can be earning more than \$200 each

False! else the average would be higher!!!

Markov's Inequality

If X is a non-negative r.v. with mean E[X], then

 $Pr[X > 2 E[X]] \le \frac{1}{2}$

 $Pr[\;X>k\;E[X]\;]\;\leq\;1/k$

Andrei A. Markov

Markov's Inequality

Non-neg random variable X has expectation A = E[X]

 $A = E[X] = E[X \mid X > 2A] Pr[X > 2A] + E[X \mid X \le 2A] Pr[X \le 2A]$

 \geq E[X | X > 2A] Pr[X > 2A] (since X is non-neg)

Also, $E[X \mid X > 2A] > 2A$

 \Rightarrow A \geq 2A × Pr[X > 2A]

 $\Rightarrow \frac{1}{2} \ge \Pr[X > 2A]$

 $Pr[X > k \times expectation] \le 1/k$

An Averaging Argument

Suppose I start at u

E[time to hit all vertices | start at u] \leq C(G)

Hence, by Markov's Inequality:

Pr[time to hit all vertices > 2C(G) | start at u] $\leq \frac{1}{2}$

So Let's Walk Some Mo!

Pr [time to hit all vertices > 2C(G) | start at u] $\leq \frac{1}{2}$

Suppose at time 2C(G), I'm at some node with more nodes still to visit

Pr [haven't hit all vertices in 2C(G) \underline{more} time | start at v] $\leq \frac{1}{2}$

Chance that you failed both times $\leq 1\!/_{\!\!4}$ = (1\(^1_{\!\!2})^2

The Power of Independence

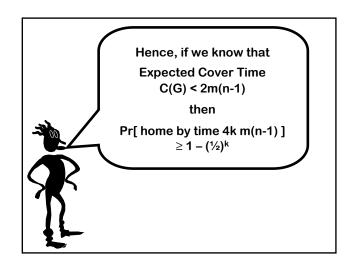
It's like flipping a coin with tails probability $q \le \frac{1}{2}$

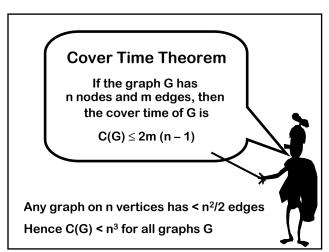
The probability that you get k tails is $q^k \le (\frac{1}{2})^k$ (because the trials are independent!)

Hence,

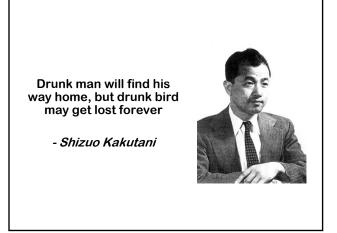
Pr[havent hit everyone in time $k \times 2C(G)$] $\leq (\frac{1}{2})^k$

Exponential in k

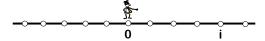








Random Walk On a Line



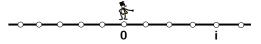
Flip an unbiased coin and go left/right Let X, be the position at time t

$$Pr[X_t = i] = Pr[\#heads - \#tails = i]$$

$$= Pr[\#heads - (t - \#heads) = i]$$

$$= \begin{bmatrix} t \\ (t-i)/2 \end{bmatrix}/2^t$$

Random Walk On a Line



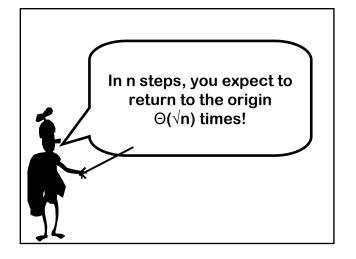
$$\Pr[X_{2t} = 0] = \begin{bmatrix} 2t \\ t \end{bmatrix} / 2^{2t} \le \Theta(1/\sqrt{t})$$
 Sterling's approx

 Y_{2t} = indicator for $(X_{2t} = 0) \Rightarrow E[Y_{2t}] = \Theta(1/\sqrt{t})$

 Z_{2n} = number of visits to origin in 2n steps

$$E[Z_{2n}] = E[\sum_{t=1...n} Y_{2t}]$$

= $\Theta(1/\sqrt{1} + 1/\sqrt{2} + ... + 1/\sqrt{n}) = \Theta(\sqrt{n})$



Simple Claim

If we repeatedly flip coin with bias p
E[# of flips till heads] = 1/p

Theorem: If Pr[not return to origin] = p, then E[number of times at origin] = 1/p

Proof: H = never return to origin. T = we do. Hence returning to origin is like getting a tails E[# of returns] = E[# tails before a head]= 1/p - 1

(But we started at the origin too!)

We Will Return...

Theorem: If Pr[not return to origin] = p, then

E[number of times at origin] = 1/p

Theorem: Pr[we return to origin] = 1

Proof: Suppose not

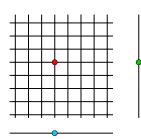
Hence p = Pr[never return] > 0

E [#times at origin] = 1/p = constant

But we showed that $E[Z_n] = \Theta(\sqrt{n}) \rightarrow \infty$

How About a 2-d Grid?

Let us simplify our 2-d random walk: move in both the x-direction and y-direction...



In The 2-d Walk

Returning to the origin in the grid

⇔ both "line" random walks return
to their origins

Pr[visit origin at time t] = $\Theta(1/\sqrt{t}) \times \Theta(1/\sqrt{t})$ = $\Theta(1/t)$

E[# of visits to origin by time n] = $\Theta(1/1 + 1/2 + 1/3 + ... + 1/n) = \Theta(\log n)$

We Will Return (Again)

Theorem: If Pr[not return to origin] = p, then

E[number of times at origin] = 1/p

Theorem: Pr[we return to origin] = 1

Proof: Suppose not

Hence p = Pr[never return] > 0

E [#times at origin] = 1/p = constant

But we showed that $E[Z_n] = \Theta(\log n) \rightarrow \infty$

But In 3D

Pr[visit origin at time t] = $\Theta(1/\sqrt{t})^3 = \Theta(1/t^{3/2})$ $\lim_{n\to\infty} E[$ # of visits by time n] < K (constant) Hence Pr[never return to origin] > 1/K

