Great Theoretical Ideas In Computer Science

Matt Streeter

CS 15-251 Spring 2006

(A. Gupta, J. Lafferty)

Lecture 23

Apr. 11, 2006

Carnegie Mellon University

Probability III: The Probabilistic Method

Five Volunteers...

Mario	2/10
Eric 1	1/10
Eric 2	2/10
Mike	1/10
Robert	2/10

Two Equivalent Facts

```
Fact 1: in any five-card hand, some pair has the same suit.
```

```
Fact 2: in any five card hand, Pr(random pair has same suit) > 0
```

Fact $1 \Leftrightarrow \text{Fact } 2$.

Proof

Let n = #(same-suit pairs)

Let A = event "random pair has same suit"

Pr(A) = n/10

So, n is always > 0 iff. Pr(A) is always > 0

Review

Random Variables

·An event is a subset of 5.

· A Random Variable (RV) is a (real-valued)

function on 5.

Example: flip two coins

•**5** = {HH,HT,TH,TT}

·Event A: first coin is heads

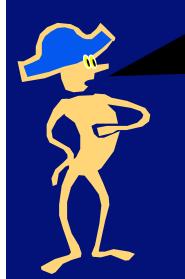
1/4 1/4 HH 1/4 HT TH 1/4 TT

·Random Variable X: the number of heads

E.g., X(HH)=2, X(HT)=1.

Two Views

It's a floor wax and a dessert topping



HMU

It's a function on the sample space S.

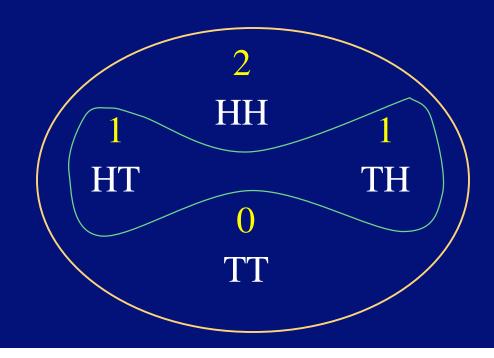
It's a variable with a probability distribution on its values.

Definition: expectation

The <u>expectation</u>, or <u>expected value</u> of a random variable X is

E.g, 2 coin flips, X = # heads.

What is E[X]?



Two Views

D S N Distrib on X
$$0 --- 1/4$$
 $1/4 \text{ TH}$ $0 --- 1/2$ $1/4 \text{ HH}$ $2 --- 1/4$ $1/4 \text{ HH}$ $E[X] = (1/4)*0 + (1/4)*1 + (1/4)*2 = 1$ $E[X] = (1/4)*0 + (1/2)*1 + (1/4)*2 = 1$

Linearity of Expectation

HMU

If
$$Z = X+Y$$
, then

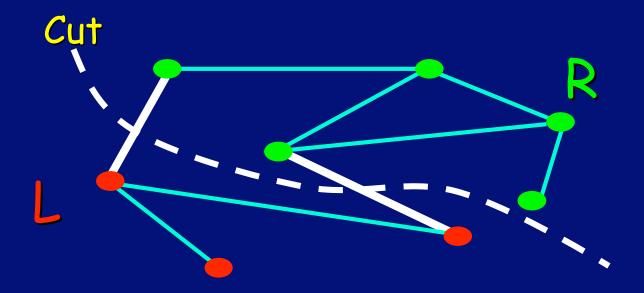
Even if X and Y are not independent.

New Topic: The probabilistic method

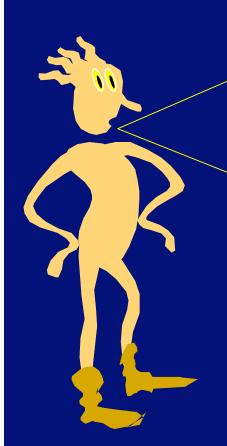
Use a probabilistic argument to prove a non-probabilistic mathematical theorem.

Definition: A cut in a graph.

A cut is a partition of the vertices of a graph into two sets: L and R. We say that an edge crosses the cut if it goes from a vertex in L to a vertex in R.



Theorem:



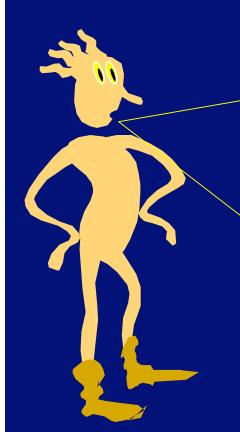
In any graph, there exists a cut such that at least half the edges cross the cut.

Theorem:

In any graph, there exists a cut such that at least half the edges cross the cut.

Will show that if we pick a cut at random, the expected number of edges crossing is e/2.

Why does this prove the theorem?



Pigeonhole principle: Given n boxes and m > n objects, at least one box must contain more than one object.

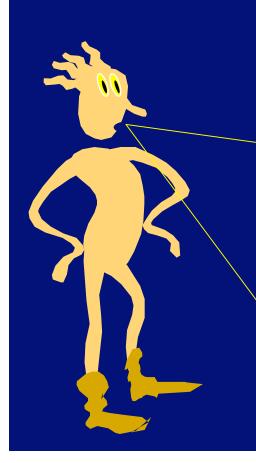
Letterbox principle: If the average number of letters per box is a, then some box will have at least a letters. (Similarly, some box has at most a.)

If E[X] = v, then $Pr(X \ge v) > 0$.

Pick a cut uniformly at random. I.e., for each vertex flip a fair coin to see if it should be in L or R.

 $E[\#of\ edges\ crossing\ cut] = e/2$

The sample space of all possible cuts must contain at least one cut that at least half the edges cross: if not, the average number of edges would be less than half!



Theorem:

In any graph, there exists a cut such that at least half the edges cross the cut.

<u>Proof:</u> Pick a cut uniformly at random. I.e., for each vertex flip a fair coin to determine if it is in L or R.

Let X_a be the indicator R.V. for the event that edge $a = \{u,v\}$ crosses the cut. What is $E[X_a]$?

u	V	Xa
L	L	0
L	R	1
R	L	1
R	R	0

$$E[X_a] = 1/4(0+1+1+0)$$

= 1/2

Theorem:

In any graph, there exists a cut such that at least half the edges cross the cut.

<u>Proof:</u> Pick a cut uniformly at random. I.e., for each vertex flip a fair coin to determine if it is in L or R.

Let X_a be the indicator R.V. for the event that edge $a = \{u,v\}$ crosses the cut. What is $E[X_a]$? Ans: 1/2.

Let X = #(edges crossing cut). So, $X = \sum_a X_a$. By linearity of expectation, $E[X] = \sum_a E[X_a] = e/2$. So, there must exist a cut with at least e/2 edges crossing it.

The Probabilistic Method

- 1. Define distribution D over objects (doesn't have to be uniform)
- 2. Define R.V. X(object) = value of object
- 3. Prove E[X] = v.
- 4. Conclude there must exist objects with value $\geq v$.

A Puzzle

10% of the surface of a sphere is colored green, and the rest is colored blue. Show that now matter how the colors are arranged, it is possible to inscribe a cube in the sphere so that all of its vertices are blue.

Solution

Pick a random cube. (Note: any particular vertex is uniformly distributed over surface of sphere).

Let $X_i = 1$ if i^{th} vertex is blue, 0 otherwise

$$E[X_i] = Pr(X_i=1) = 9/10$$

Let
$$X = X_1 + X_2 + ... + X_8$$

$$E[X] = 8*9/10 > 7$$

So, must have some cubes where X = 8.

 \mathcal{HMU}

Can you use this method to find a cut where at least e/2 edges cross?

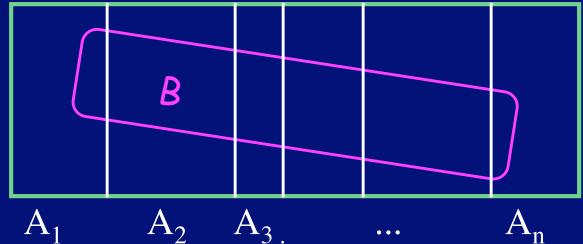
In this case you can, through a neat strategy called the conditional expectation method

Idea: make decisions in greedy manner to maximize expectation-to-go.

First, a few more facts...

For any partition of the sample space S into disjoint events A_1 , A_2 , ..., A_n , and any event B,

 $Pr(B) = \sum_{i} Pr(B \cap A_{i}) = \sum_{i} Pr(B|A_{i})Pr(A_{i}).$



Def: Conditional Expectation

For a random variable X and event A, the conditional expectation of X given A is defined as:

Useful formula: for any partition of S into $A_1, A_2,...$ we have: $E[X] = \sum_i E[X|A_i]Pr(A_i)$.

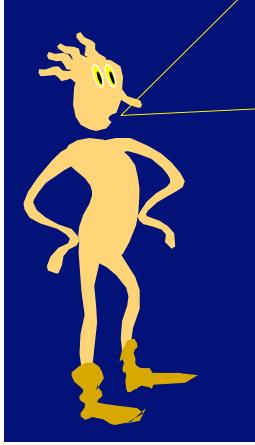
Proof: just plug in $Pr(X=k) = \sum_{i} Pr(X=k|A_i)Pr(A_i)$.

Recap of cut argument

Pick random cut.

- ·Let $X_a=1$ if a crosses, else $X_a=0$.
- ·Let X = total #edges crossing.
- •So, $X = \sum_{\alpha} X_{\alpha}$.
- •Also, $E[X_a] = 1/2$.
- ·By linearity of expectation,

$$E[X] = e/2.$$



Conditional expectation method

Say we have already decided fate of vertices 1,2,...,i-1. Let X = number of edges crossing cut if we place rest of vertices into L or R at random.

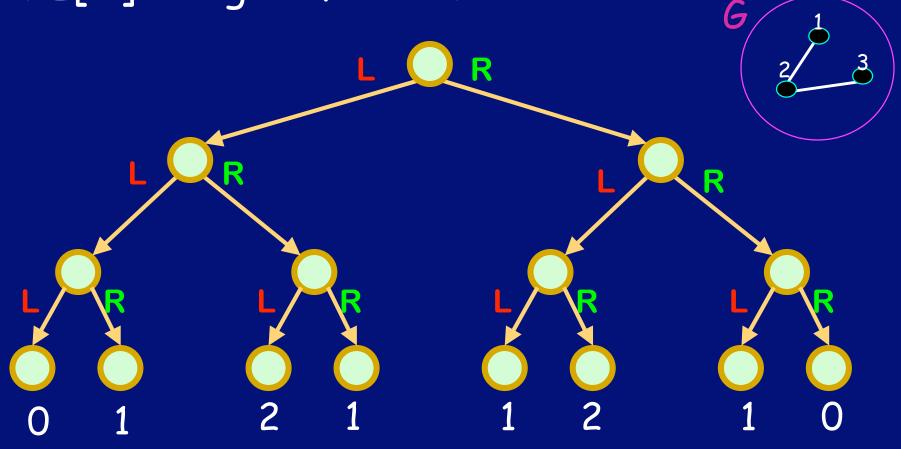
Let A = event that ver

So, E[X] = E[X|A]*(1/2)

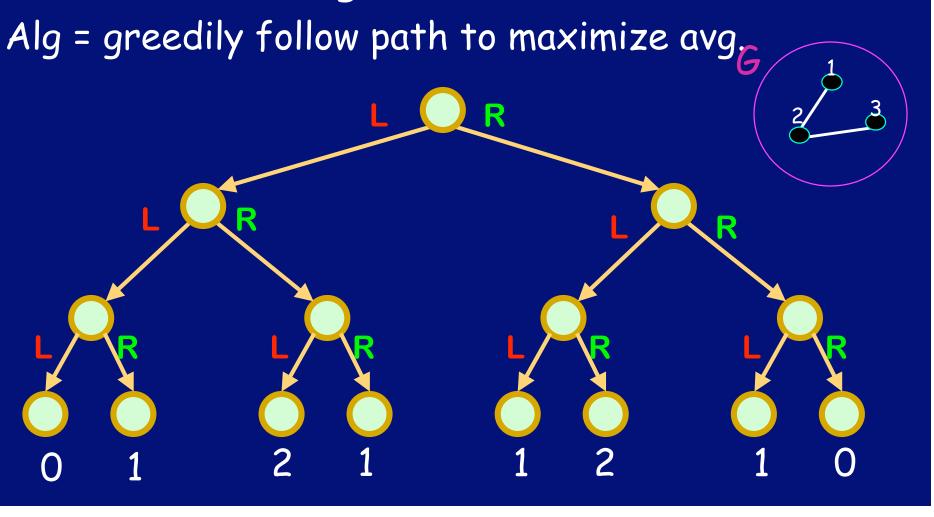
Invariant: the expectation-to-go is always at least e/2

It can't be the case that both terms on the RHS are smaller than the LHS. So just put vertex i into side whose C.E. is larger.

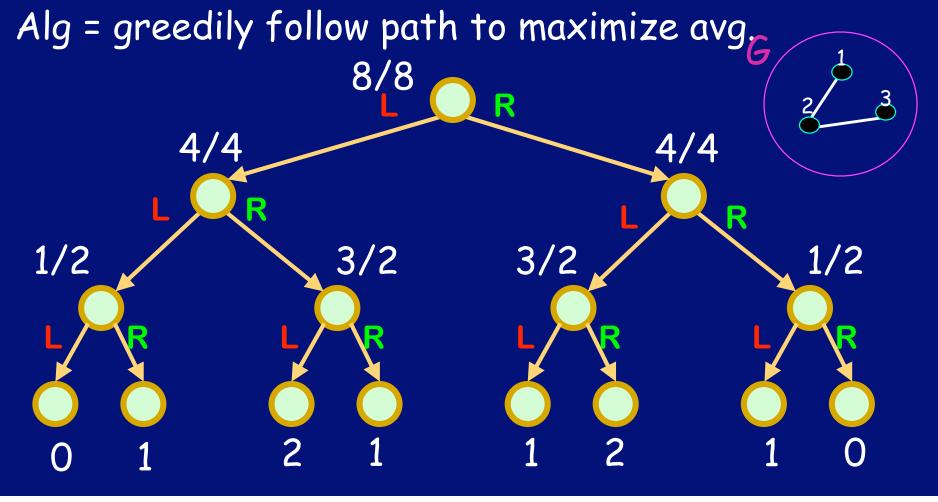
View 5 as leaves of choice tree. i^{th} choice is where to put vertex i. Label leaf by value of X. E[X] = avg leaf value.



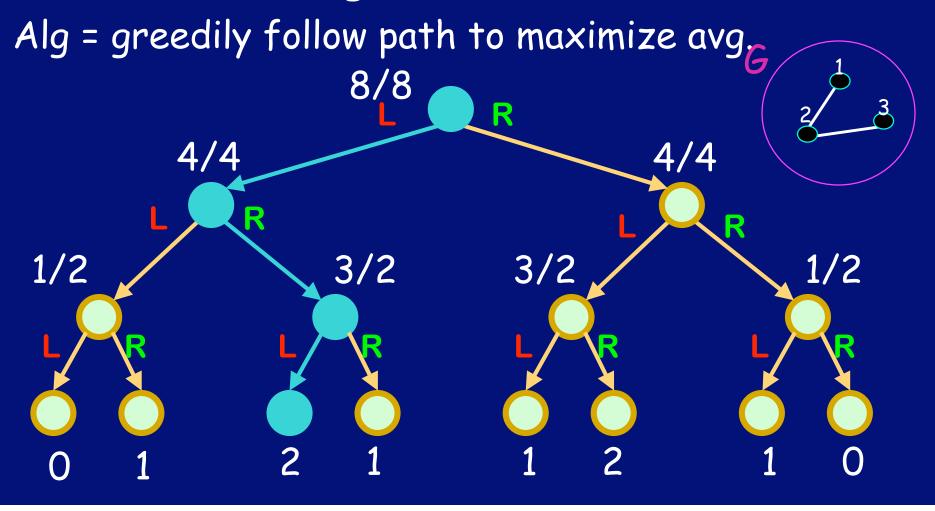
If A is some node (the event that we reach that node), then E[X|A] = avg value of leaves below A.



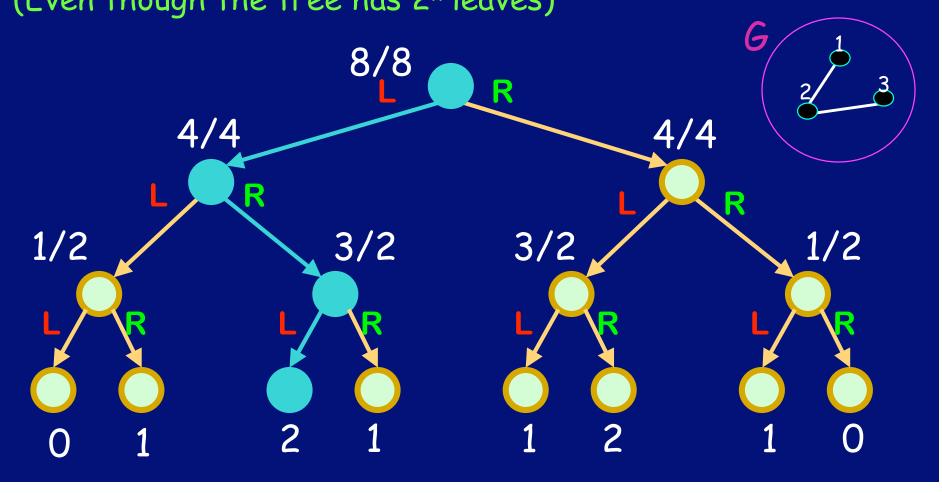
If A is some node (the event that we reach that node), then E[X|A] = avg value of leaves below A.



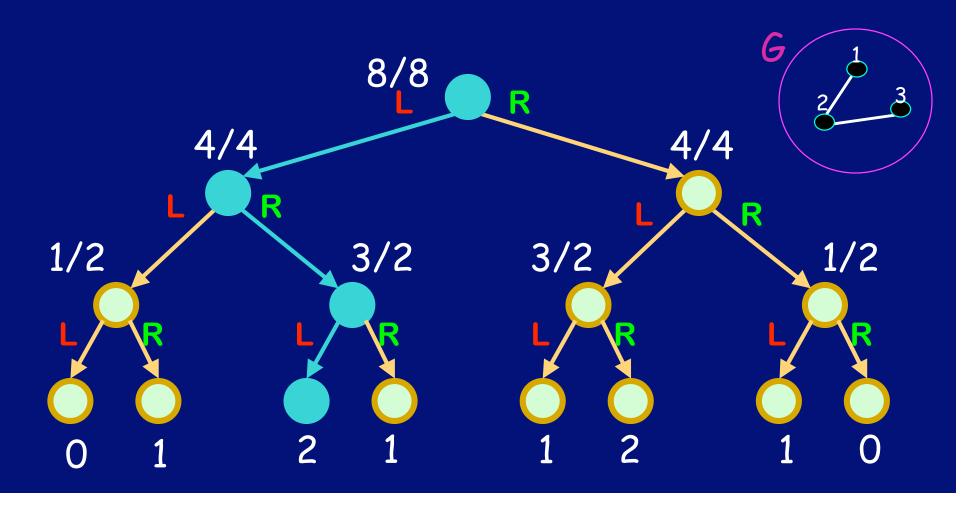
If A is some node (the event that we reach that node), then E[X|A] = avg value of leaves below A.



Linearity of expectation gives us a way of magically computing E[X|A] for any node A. (Even though the tree has 2^n leaves)

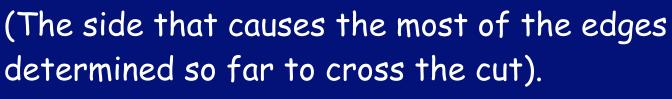


In particular, E[X|A] = (# edges crossing so far) + (# edges not yet determined)/2



Conditional expectation method

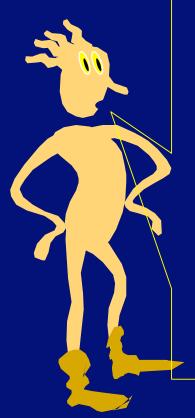
In fact, our algorithm is just: put vertex i into the side that has the fewest of its neighbors so far.



But the probabilistic view was useful for proving that this works!

Often, though, we can't get an exact handle on these expectations. The probabilistic method can give us proof of existence without an algorithm for finding the thing.

In many cases, no efficient algorithms for finding the desired objects are known!



Constraint Satisfaction

Is there an assignment to Boolean variables $X_1, X_2, ..., X_5$ that makes this formula true?

clause

literal

 $(X_1 \text{ or } ! X_2 \text{ or } X_4)$ and $(!X_3 \text{ or } ! X_4 \text{ or } X_5)$ and $(X_2 \text{ or } X_3 \text{ or } X_4)$

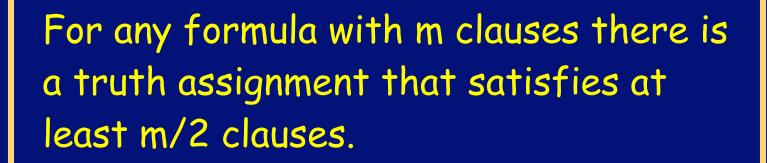
Clause is satisfied if at least one of its literals is true.

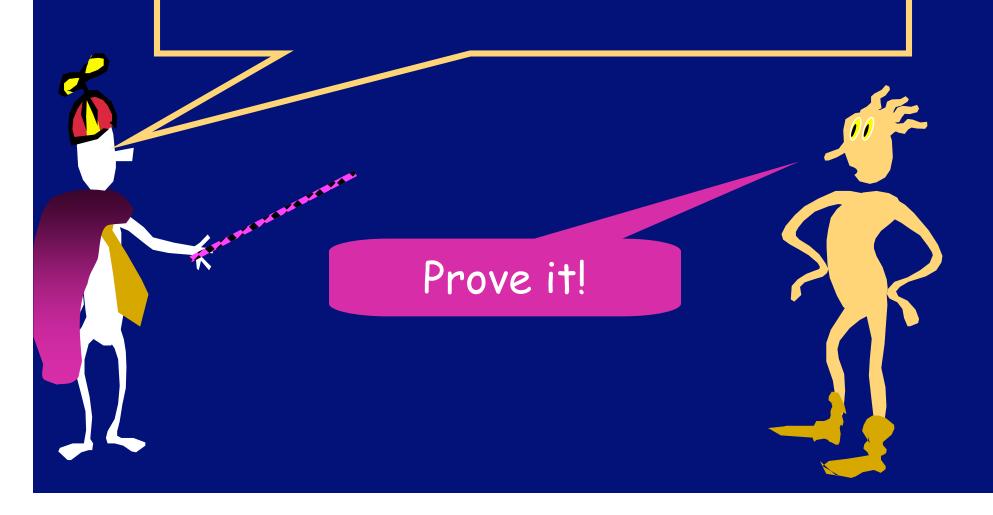
$$X_1=T$$
, $X_2=T$, $X_3=F$, $X_4=F$, $X_5=F$

Constraint Satisfaction

In general, it's difficult to determine if a formula is satisfiable, or to maximize the number of satisfying clauses (more on this later...)

 $(X_1 \text{ or } ! X_2 \text{ or } X_4) \text{ and } (! X_3 \text{ or } ! X_4 \text{ or } X_5) \text{ and } (X_2 \text{ or } X_3 \text{ or } X_4)$





For any formula with m clauses there is a truth assignment that satisfies at least m/2 clauses.

 Make a random coin flip to decide if each variable should be T or F.

·Let Z_i =1 if the ith clause is satisfied and Z_i =0 otherwise. If a clause has k vars, the chance it is *not* satisfied by this random assignment is $(1/2)^k$ (all literals must be F)

•So, the chance it is satisfied is $1-(1/2)^k = E[Z_i] \ge 1/2$.

•Therefore, $E[Z_1+Z_2+...+Z_m] \ge m/2$

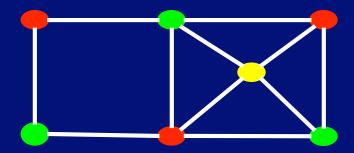
For any formula with m clauses there is a truth assignment that satisfies at least m/2 clauses.

If each clause has k literals, there must be an assignment that satisfies at least 1-(1/2) k clauses (can use C.E. method to find such an assignment).

Independent Sets

An independent set in a graph is a set of vertices with no edges between them.

Note: a coloring of a graph divides it into independent sets.



So, a k-colorable graph on n vertices must have an independent set of size at least n/k (letterbox).

Theorem: If a graph G has n vertices and e edges, then it has an independent set with at least n²/4e vertices.

Let d = 2e/n be the average degree.

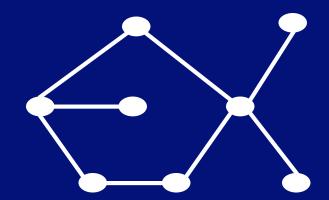
Randomly take away vertices and edges:

- 1. Delete each vertex of G (together with its incident edges) with probability 1-1/d
- 2. For each remaining edge remove it and one of its vertices.

The remaining vertices form an independent set. How big is it expected to be?

Example

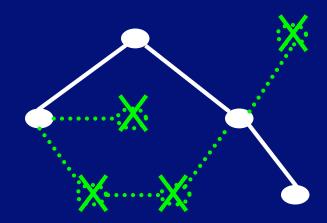
$$n = 8$$
 $e = 8$
 $d = 2e/n = 2$



1. Delete each vertex of G (together with its incident edges) with probability 1-1/d = 1/2

Example

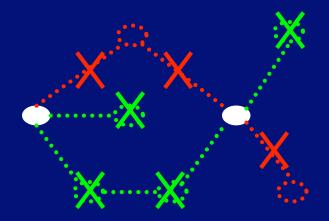
$$n = 8$$
 $e = 8$
 $d = 2e/n = 2$



- Delete each vertex of G (together with its incident edges) with probability 1-1/d =
 1/2
- 2. For each remaining edge remove it and one of its vertices.

Example

d = 2e/n = 2



- 1. Delete each vertex of G (together with its incident edges) with probability 1-1/d = 1/2
- 2. For each remaining edge remove it and one of its vertices.

Theorem: If a graph G has n vertices and e edges, then it has an independent set with at least n²/4e vertices.

Let X be the number of *vertices* that survive step 1: E[X] = n/d.

Let Y be the number of edges that survive step 1: $E[Y] = e(1/d)^2 = nd/2 (1/d)^2 = n/2d$.

Step 2 removes one at most Y vertices (one per surviving edge), so we're left with at least X-Y vertices.

 $E[X-Y] = n/d - n/2d = n/2d = n^2/4e$

The Probabilistic Method

- what it is
- how to use it to prove theorems
 Conditional expectation
- definition
- partitioning identity