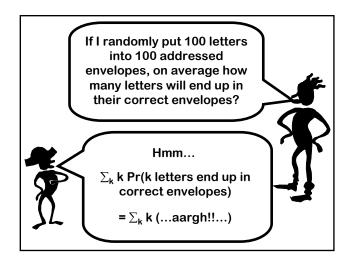
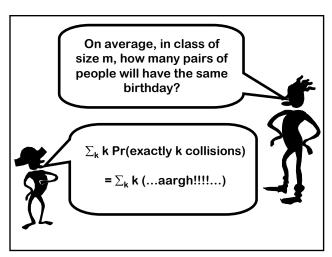


Today, we will learn about a formidable tool in probability that will allow us to solve problems that seem really really messy...





The new tool is called "Linearity of Expectation"

Random Variable

To use this new tool, we will also need to understand the concept of a Random Variable

Today's lecture: not too much material, but need to understand it well

Random Variable

Let S be sample space in a probability distribution A Random Variable is a real-valued function on S Examples:

X = value of white die in a two-dice roll

X(3,4) = 3, X(1,6) = 1

Y = sum of values of the two dice

Y(3,4) = 7, Y(1,6) = 7

W = (value of white die) value of black die

 $W(3,4) = 3^4$, $Y(1,6) = 1^6$

Tossing a Fair Coin n Times

 $S = all sequences of {H, T}^n$

D = uniform distribution on S \Rightarrow D(x) = $(\frac{1}{2})^n$ for all $x \in S$

Random Variables (say n = 10)

X = # of heads

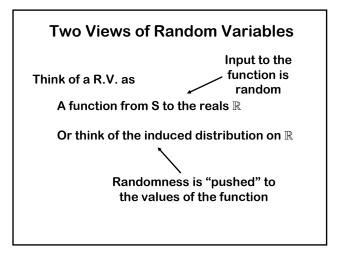
X(HHHTTHTHTT) = 5

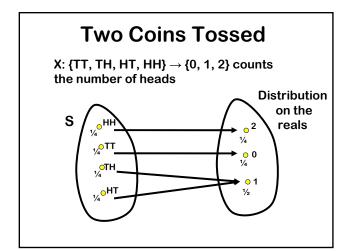
Y = (1 if #heads = #tails, 0 otherwise)

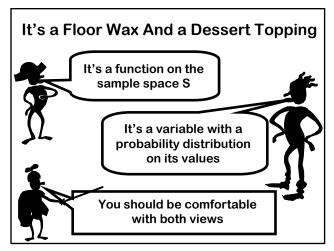
Y(HHHTTHTHTT) = 1, Y(THHHHTTTTT) = 0

Notational Conventions

Use letters like A, B, E for events
Use letters like X, Y, f, g for R.V.'s
R.V. = random variable







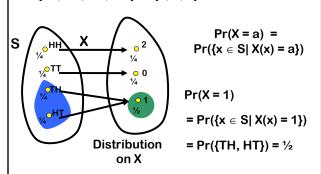
From Random Variables to Events

For any random variable X and value a, we can define the event A that X = a

$$Pr(A) = Pr(X=a) = Pr(\{x \in S | X(x)=a\})$$

Two Coins Tossed

X: {TT, TH, HT, HH} \rightarrow {0, 1, 2} counts # of heads



From Random Variables to Events

For any random variable X and value a, we can define the event A that X = a

From Events to Random Variables

For any event A, can define the indicator random variable for A:

$$X_{A}(x) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A \end{cases}$$

Definition: Expectation

The expectation, or expected value of a random variable X is written as E[X], and is

$$E[X] = \sum_{x \in S} Pr(x) X(x) = \sum_{k} k Pr[X = k]$$

$$X \text{ is a function} \qquad X \text{ has a}$$
on the sample space S distribution on its values

A Quick Calculation...

What if I flip a coin 3 times? What is the expected number of heads?

$$E[X] = (1/8) \times 0 + (3/8) \times 1 + (3/8) \times 2 + (1/8) \times 3 = 1.5$$

But
$$Pr[X = 1.5] = 0$$

Moral: don't always expect the expected. Pr[X = E[X]] may be 0!

Type Checking

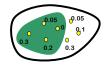
A Random Variable is the type of thing you might want to know an expected value of

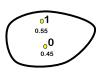
If you are computing an expectation, the thing whose expectation you are computing is a random variable

Indicator R.V.s: $E[X_A] = Pr(A)$

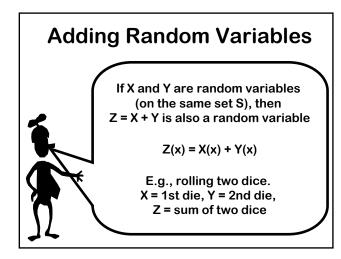
For any event A, can define the indicator random variable for A:

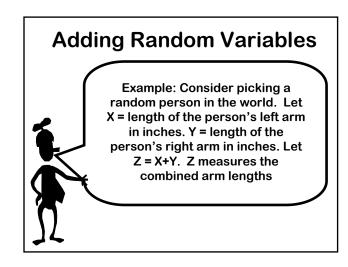
$$X_{A}(x) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A \end{cases}$$

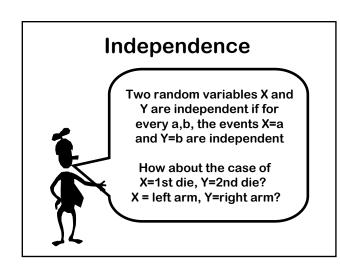


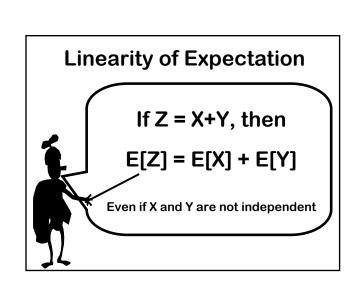


$$\mathsf{E}[\mathsf{X}_\mathsf{A}] = 1 \times \mathsf{Pr}(\mathsf{X}_\mathsf{A} = 1) = \mathsf{Pr}(\mathsf{A})$$







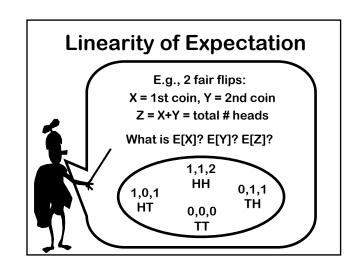


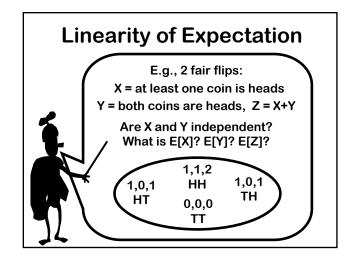
$$E[Z] = \sum_{x \in S} Pr[x] Z(x)$$

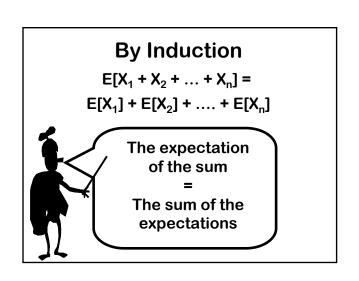
$$= \sum_{x \in S} Pr[x] (X(x) + Y(x))$$

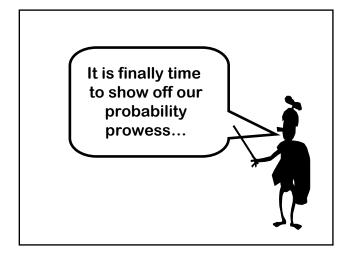
$$= \sum_{x \in S} Pr[x] X(x) + \sum_{x \in S} Pr[x] Y(x))$$

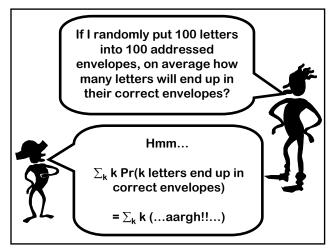
$$= E[X] + E[Y]$$

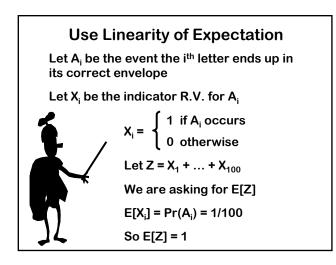


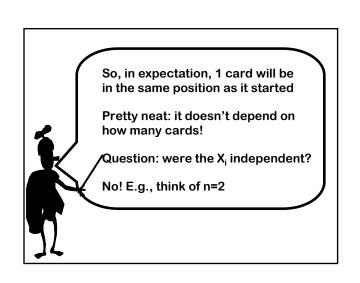


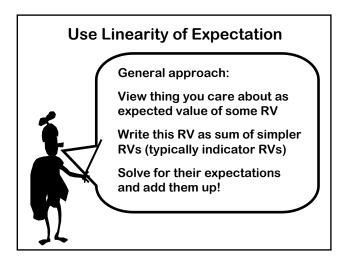


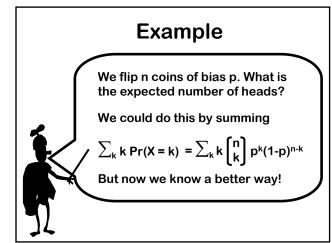












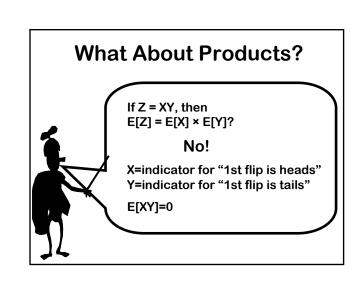
Linearity of Expectation!

Let X = number of heads when n independent coins of bias p are flipped

Break X into n simpler RVs:

$$X_{i} = \begin{cases} 1 & \text{if the } j^{th} \text{ coin is tails} \\ 0 & \text{if the } j^{th} \text{ coin is heads} \end{cases}$$

$$E[X] = E[\Sigma_i X_i] = np$$



But It's True If RVs Are Independent

Proof:
$$E[X] = \sum_a a \times Pr(X=a)$$

 $E[Y] = \sum_b b \times Pr(Y=b)$

$$E[XY] = \sum_{c} c \times Pr(XY = c)$$

=
$$\sum_{\mathbf{c}} \sum_{\mathbf{a},\mathbf{b}:\mathbf{ab=c}} \mathbf{c} \times \mathbf{Pr}(\mathbf{X=a} \cap \mathbf{Y=b})$$

=
$$\sum_{a,b}$$
 ab × Pr(X=a \cap Y=b)

=
$$\sum_{a,b}$$
ab × Pr(X=a) Pr(Y=b)

= E[X] E[Y]

