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1. A Parallel Perspective
2. Compression

How to add 2 n-bit numbers.
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Let ¢ be the maximum
time that it takes you ‘ T(n) < c*nis

to do D proportional o n

If n people agree to add two n bit numbers, can
they finish faster than you alone?.
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Is it possible to add
two n bit humbers in
less than linear
parallel-time?

| Darn those carries ! |

To find fast parallel
ways of adding,
let's re-examine grade

school addition from
the view of a computer
circuit.

Grade School Addition

C5Cy4 C3Cy Cy
a, G50, q; 4,
b, by b, b, b,

Grade School Addition

Cs C4 C3 C3]Cy
a, a3 a,a; |ag
b, bs b,lby|b,
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Adder

D

1-bit
Ci.1 9 wder  |*C;

Logical representation of binary:
O = false, 1 = true

S = (01 XOR bl) XOR Cq

¢, = (a; AND by)
OR (01 AND Cl)
OR (b; AND ;)




Ripple-carry adder

Ripple-carry adder
1 3! 1 1

e e

How long to add two n bit numbers?

Ripple-carry adder

[ R S S ¥
B, O, I I, N C
v v v ¥

How long to add two n bit numbers?

Propagation time through the
ripple-carry adder will be O(n)

Circuits compute things
in parallel.

We can think of the
propagation delay as

PARALLEL TIME.

Is it possible to add
two n bit numbers in
less than linear
parallel-time?

Darn those carries
(again)!




If we knew the carries it would be very
easy to do fast parallel addition

So how do we figure
out the carries fast?

What do we know about the carry-
out before we know the carry-in?

ab

What do we know about the carry-
out before we know the carry-in?

ab

This is just a function of a and b.
We can do this in parallel.

Idea: do this calculation first.

10. . .. g0
1011111

1000000

+

Note that this just took one step!

Now if we could only replace the < by 0/1 values...

Idea: do this calculation first.

10c c 1.0
1011111101

1000000110

+




Idea: do this calculation first.

10 < 1000
1011111101

1000000110

+

Idea: do this calculation first.

10 - 111000
1011111101

1000000110

+

Idea: do this calculation first.

10111111000
1011111101

1000000110

Idea: do this calculation first.

10111111000
1011111101

1000000110
10100000011

Once we have the carries, it takes only one more step:
s; = (a; XOR b;) XOR ¢;

10 c 1.0

So, everything boils down to:

can we find a fast parallel y

way to convert each position
to its final 0/1 value?

Prefix Sum Problem

Input: X1 Xnzs X1, Xo
Output: Yo, Y2 Y1. Yo
where
Yoz Xo +is Addition

Y= Xo+ X
Y2 = Xo+ X+ X,
Y3=Xo+ Xy + Xz + X3

Y1 Xo# Xi+ X+ Xg+ o+ Xy




Idea to get 10111111000

Can think of 10— <= ¢ ¢« <1<« 0as
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for the operator M:

«M X = X 0(0|0
Imx=1 111
Omx=0 ol1le

Example circuitry
(n=4)

Divide, conquer, and glue
for computing y,

Xn1 Xoz X(n/?‘\
¥

Xzt - X1 Xo

i 4 + ol

@ T(1)=0

Yn-1 T(n) = T(n/2T)+ 1
T(n) =[log, n 1

Associative Binary Operator

Binary Operator: an operation that
takes two objects and returns a third.
AaB=C

Associative:
‘(AaB)aC=Aa(BaC)

Divide, conquer, and glue
for computing y,

Xnt Xnz o Xz Xinjzra - X1 Xo
¥ 4 ¥ ¥ Vo

Yn-1

-~

The parallel time taken
is T(n) =[log, nl !

But how many o
components does
this use? What is the

size of the circuit?




Size of Circuit
(number of gates)
Xn-l Xn-Z X(n/?‘\ an/ﬂ-l ><1 ><0
'

Yn-1

Size of Circuit
(number of gates)
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Y s(1)0
S(n) = s(n/21) + S(Ln/2]) +1
S(n)=n-1

Sum of Sizes

S(n)=0+1+2+3+ ..+ (n1)=n(n1)/2

This algorithm is
fast, but it uses too
many components!

Modern computers
do something
slightly different.

Addition can be done
in O(log n) parallel
time, with only O(n)
components!

What about
multiplication?

How about multiplication?

*x % %k Xk %k X% % X%
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Grade School Multiplication

y FrErers Adding these numbers in parallel

Khkk kKK Kk

VNV VNV VYV vy
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We need to add n 2n-bit numbers:
ay, @y, Qs,..., G,

What is the depth of the circuit?

Can we do better?

Each addition ’rakes O(log n) How about O(log n)
parallel time parallel time?

Depth of tree = log, n

Total O(log n)? parallel time

How about multiplication? “Carry-Save Addition”

The sum of three numbers can be
converted into the sum of 2 numbers in
constant parallel time!

+ 1100111011

Let's think about how to add 3 101 1111101
numbers to make 2 numbers. 10000001 10

Here's a really neat trick:




"Carry-Save Addition"

The sum of three humbers can be
converted into the sum of 2 numbers in
constant parallel time!

+ 110011101}
101111110I
1000000110

+ 111100000
10001111

A free of carry-save adders

AVAVIRY %Pﬁ%

EB|EXIES

[l
[ Add the last two ]

!

A tree of carry-save adders

ﬁﬁﬁ"]ﬁ“‘] F‘]ﬁﬁﬁ‘ﬁ

A tree of carry-save adders

ﬁﬁﬁ"]ﬁ"] Fﬁﬁ“]ﬁ‘ﬁ

[ Add the last two ]
]

T(n) = logs,»(n) + [last step]

[ carry look ahead ]
!

T(n) = logs,»(n) + 2log,2n + 1

We can multiply in O(log n) parallel
time too!

For a 64-bit word
that works out to a
parallel time of 22
for multiplication,
and 13 for addition.




And this is how addition works
on commercial chips

Processor n 2log,n +1
80186 16 9
Pentium 32 1
Alpha 64 13

Excellent!
Parallel time for:

Addition = O(log n)
Multiplication = O(log n)

Hey, we forgot
subtraction!

Most computers use
two's compliment
representation fo add
and subtract integers.

What about division?
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Grade School Division

*x Kk k ok k ok k k ok %k
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Suppose we have n bits of precision.
Ndive method: n subtractions costing
2log,n + 1 each = O(n log n) parallel time

Let's see if we can

reduce to O(n) by

being clever about
it.

Idea: use extended binary all
through the computation!

Then convert back at the end. i

SRT division algorithm
11-110 r-1-11 21r6 22r-5
1011/ 11101101 11[237 11[237
-10-1-1
Rule: Each bit of quotient
10-11 . . .
is determined by comparing
-10-1-1 first bit of divisor with first
20 bit of dividend. Easy!
=-1001
1011 Time for n bits of precision in result:
=1(1)(2)0 =~ 3n + 2log,(n) +1
-10-1-1

1 addition  Convert to standard
0-1-11 per bit representation by
subtracting negative
bits from positive.

Intel Pentium division error

The Pentium uses essentially the same algorithm,
but computes more than one bit of the result in
each step.

Several leading bits of the divisor and quotient are
examined at each step, and the difference is looked
up in a table.

The table had several bad entries.

Ultimately Intel offered to replace any defective
chip, estimating their loss at $475 million.

If I had millions
of processors,
how much of a

speed-up might I

get over a single
processor?
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Brent's Law

At best, p processors
will give you a
factor of p speedup
over the time it takes on
a single processor.

The traditional GCD
algorithm will take
linear time to operate
on two n bit numbers.

Can it be done faster
in parallel?

If n? people agree to help you compute the
6CD of two n bit numbers, it is not obvious
that they can finish faster than if you had
done it yourself.

“Q“
i fm

Decision Trees and Information:
A Question of Bits

A

20 Questions
S = set of all English nouns

Game:
I am thinking of an element of S.

You may ask up to 20 YES/NO
questions.

What is a question strategy for this
game?

12



Choice Tree

A choice tree is a rooted, directed tree
with an object called a “choice"

associated with each edge and
a label on each leaf.

Choice Tree Representation of S

@
b5 d
D
We satisfy these two conditions:

Each leaf label is in S
Each element from S on exactly one leaf.

Question Tree Representation of S

l‘ \ ! l
@ DD
T am thinking of an outfit.
Ask me questions until you know which one.

What color is the beanie?
What color is the tie?

When a question tree has\
at most 2 choices at each node,

we will call it a decision tree,
or a decision strategy.

W Note: Nodes with one choices
represent stupid questions, but
we do allow stupid questions.

20 Questions
Suppose S = {a,, a, ay, ..., Q. }
Binary search on S.

First question will be:

"Is the word in{ay, a;, @,, ..., Gy 1y/2}
?Il

20 Questions
Decision Tree Representation

A decision tree with depth at most 20,
which has the elements of S on the
leaves.

Decision tree for  Decision tree for
{ap, a1, @y, ..., 0(k-1)/2} {G(M)/z, s Ot Qi

13



Decision Tree Representation

Theorem:
The binary-search decision tree for S with
k+1 elements { aq, a4, @y, ..., a, } has depth

[log (k+1) |
= Llog k) +1

“the length of k
when written

in binary"

A lower bound

Theorem: No decision tree for S (with k+1

elements) can have depth d <[ log k] + 1.

A lower bound

Theorem: No decision tree for S (with k+1
elements) can have depth d < log k] + 1.
Proof:

A depth d binary tree can have at most 24
leaves.

But d < Llog k] + 1 = number of leaves 24 <
(k+1)
Hence some element of S is not a leaf.

Tight bounds!

The optimal-depth decision tree
for any set S with (k+1) elements has
depth

Llog k] +1=|k|

Recall...

The minimum number of bits used to
represent unordered 5 card poker hands

Recall...

The minimum number of bits used to
represent unordered 5 card poker hands =

“0g2 (552)—|
= 22 bits

= The decision tree depth for 5 card poker
hands.
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Prefix-free Set

Let T be a subset of {0,1}".

Definition:

T is prefix-free if for any distinct xy € T,

if |x| < |yl, then x is not a prefix of y

Example:
,.)1, ,-1} is prefix-free
{0, 01, 10, 11, 101} is not.

Prefix-free Code for S

Let S be any set.

Definition: A prefix-free code for S is
a prefix-free set T and
a 1-1 “encoding” function f: S -> T.

The inverse function ! is called the
"“decoding function”.
Example: S = {buy, sell, hold}.

T={0, 110, 1111}.

f(buy) = 0, f(sell) = 1111, f(hold) = 110.

What is so cool
about prefix-free
codes?

Sending sequences of
elements of S over a
communications
channel

89 Let T be prefix-free and f be an

X, X3, >

Sender: sends f(x;) f(x,) f(x3)..

Receiver: breaks bit stream into
elements
of T and decodes using f-1

encoding function. Wish to send <x;,

Sending info on a channel

Example: S = {buy, sell, hold}.
T={0, 110, 1111},
f(buy) = O, f(sell) = 1111, f(hold) = 110.

If we see
00011011111100...

we know it must be
00011011111100 ...

and hence
buy buy buy hold sell hold buy ...

Morse Code is not Prefix-freel

SOS encodes as ...---...

A .- F..-. K-.- P.--. uU..- Z--..
B-... G--. L.-.. Q--.- V..-
C-.-. H.... M-- R.-. W.--
D-.. I.. N -. S... X-..-
E. J.--- 0--- T- Y-.--

15



Morse Code is not Prefix-freel

S0S encodes as ..---...

Could decode as: ..|.-|--|..|. =IAMIE
A.- Fiee  Kee Puee U.m Zen
B-r. Ge--. Lo  Qe-m V..
Coee Hoo M-~ R W.—-
b-.. I.. N-. S, X-.-
E. Joeee 0-e- T- Y-

Unless you use pauses

SOSencodesas ... --- ..

A .- Fo-. K== P.e=. U.-  Z--.
B-... 6--. L.o-.. Q--- V..-
C--. H... M-- R.-. W .--
D-.. I.. N-. 5. X-..-
E. J.--= 0--- T- Y-

Prefix-free codes
are also called
"self-delimiting"
codes.

W

Representing prefix-free codes

A =100
B =010
¢=101
D =011
E=00
F=11

"CAFE" would encode as 1011001100
How do we decode 1011001100 (fast)?

If you see: 1000101000111011001100

can decode as:

If you secjllP00101000111011001100

can decode as: A

16



If you see: 1(ll1101000111011001100

can decode as: AB

B D A c
If you see: 1000[l000111011001100

can decode as: ABA

B D A c
If you see: 1000101[ll0111011001100

can decode as: ABAD

B D A c
If you see: 100010100l 1011001100

can decode as: ABADC

B D A (o
If you see: 10001010001l 1001100

can decode as: ABADCA

B D A c
If you see: 1000101000111058001100

can decode as: ABADCAF

17



B D A ¢
If you see: 1000101000111011q 1100

can decode as: ABADCAFE

Prefix-free codes
are yet another
representation of a
decision tree.

W
heorem:

S has a decision tree of depth d
if and only if

S has a prefix-free code with all
codewords bounded by length d

Extends to infinite sets
Let S is a subset of X*

Theorem:

S has a decision tree where all length n
elements
of S have depth < D(n)

if and only if
S has a prefix-free code where all length n

strings
in S have encodings of lenath < D(n)

T am thinking of some
natural number k.
ask me YES/NO questions in
order to determine k.

W

Let d(k) be the number of questions
that you ask when I am thinking of
k.

Let D(n) = max { d(k) over n-bit
numbers k }.

T am thinking of some
natural humber k -
ask me YES/NO questions in
order to determine k.

M Naive strategy: Is it 0? 12 2?2 32 ..

d(k) = kel

D(n) = 2! since 2m! -1 uses only n
bits.

Effort is exponential in length of k

T am thinking of some
natural number k -
ask me YES/NO questions in
order to determine k.

W

What is an efficient
question strategy?

18



T am thinking of some
natural number k...

W. Does k have length 12 NO

Does k have length 22 NO
Does k have length 32 NO

Does k have length n? YES

Do binary search on strings of
length n.

d(k) = [k] + [kl
=2([logk|+1)

B(n) = 2n Size First/ Binary Search

Does k have length 17 NO
Does k have length 22 NO
Does k have length 32 NO

Does k have length n? YES

Do binary search on strings of
length n.

What prefix-free code
corresponds to the

Size First / Binary Search

decision strategy?

W
f(k) = (k| - 1) zeros, followed

by 1, and then by the binary
representation of k

[f(k)I = 2 |K]|

Another way to look at f
k = 27 = 11011, and hence |k| =5
f(k) = 00001 11011

"Fat Binary" < Size First/Binary
Search strategy

Is it possible to beat 2n questions
to find a number of length n?

Look at the prefix-free code...

Any obvious improvement
suggest itself here?

W

length of k in unary = |k| bits
k in binary = |k| bits

19



In fat-binary, D(n) < 2n
Now D(n)¢<n+2 (| logn | +1)

Can you do better?

W efter-than-Fat-Binary-code(k)

concatenates

length of k in fat binary = 2|[k]|
bits

k in binary = |K|
bits

Hey, wait!
In abetter prefix-free code

RecursiveCode(k) concatenates
RecursiveCode(|k|) & k in binary &

better-than-Fat-Binary code

better-t-FB 11Kkl +2[11kI]
|k| in fat binary = 2||kl|
bits
k in binary = |k| bits

Oh, I need to remember how many
levels of recursion r(k)

In the final code
F(k) = F(r(k)) . RecursiveCode(k) ﬂ

r(k) = log* k

Hence, length of F(k)
= [kl 1K+ KT+ o+

Good, Bonzo! T had thought you
had fallen asleep.

W

Maybe I can do better...

Can I get a prefix code
for k with length = log k ?

No!
Let me tell you why

length = log k
is not possible

W

20



Decision trees have a natural
probabilistic interpretation.

Let T be a decision tree for S.
Start at the root, flip a fair

coin at each decision, and stop
when you get to a leaf.

Each sequence w in S will be hit
with probability 1/21wl

Random walk down the tree

Pr(F) = &, Pr(A) = 1/8, Pr(C) = 1/8, ..

Let T be a decision tree for S
(possibly countably infinite set)

The probability that some
element in S is hit by a random
W walk down from the root is

L\v‘/% S 1/2‘“" : l
I 4

Kraft Inequality

Let S be any prefix-free code.

Kraft Inequality:
Yaes 172 <1

W

Fat Binary:
f(k) has 2|k| = 2 log k bits

Let S be any prefix-free code.

Kraft Inequality:
Yaes 172w <1

W

Better-than-FatB Code:
f(k) has |k| + 2||k|| bits

% Tyeny 1/(k (log k)?)

Let S be any prefix-free code.

Kraft Inequality:
Yaes 172w <1

W

Ladder Code: k is represented by
[kl + [kl + [Ik[] + ... bits

% Yoy 1/(k logk loglogk ...)

21



Let S be any prefix-free code.

Kraft Inequality:
Ywes 172w <1

W

Can a code that represents k by
|k| = logk bits exist?

No, since ¥y 1/k diverges !l
So you can't get log n, Bonzo...

Back to compressing words

The optimal-depth decision tree
for any set S with (k+1) elements has
depth
Llog jd +1

The optimal prefix-free code
for A-Z + "space” has length
Llog26]+1=5

English Letter Frequencies

But in English, different letters occur
with different freguencies.

A8.1% F23% K.79% P1é6% U28% Z.04%
B 1.4% 621% L37% Q .11% V .86%

C2.3% H66% M26% R62% W24%

D47% 168% N7.1% 563% X.11%

E12% J 1% 077% T90% Y20%

short encodings!
Why should we try to minimize
the maximum length of a codeword?

If encoding A-Z, we will be happy if
the "average codeword" is short.

Given frequencies for A-Z,
what is the optimal
prefix-free encoding of the
alphabet?

b, I.e., one that minimizes the

é/\ average code length

Huffman Codes: Optimal Prefix-free
Codes Relative to a Given Distribution

Here is a Huffman code based on the English
letter frequencies given earlier:

A 1011 F 101001 K 10101000 P 111000 U 00100
B 111001 6101000 L 11101 Q1010100100  V 1010101
€01010  H 1100 M 00101 ROO11 W 01011
D 0100 I N 1000 S 1101 X 1010100101
E 000 J 1010100110  © 1001 To1 Y 101011

Z 1010100111
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