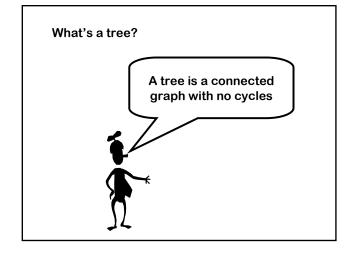
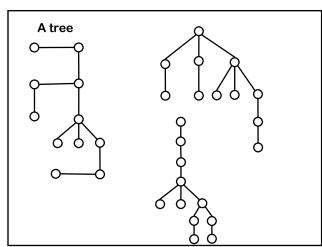
15-251

Great Theoretical Ideas in Computer Science

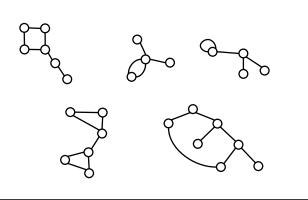
Graphs

Lecture 15 (March 7, 2006)





Not Trees:



How Many n-Node Trees?

- 1: 0
- 2: 0-0
- 3: 0-0-0
- 4: 0-0-0-0
- 5: 0-0-0-0 0-0-0

Notation

In this lecture:

n will denote the number of nodes in a graph e will denote the number of edges in a graph

Theorem: Let G be a graph with n nodes and e edges

The following are equivalent:

- 1. G is a tree (connected, acyclic)
- 2. Every two nodes of G are joined by a unique path
- 3. G is connected and n = e + 1
- 4. G is acyclic and n = e + 1
- 5. G is acyclic and if any two non-adjacent points are joined by a line, the resulting graph has exactly one cycle

To prove this, it suffices to show $1 \Rightarrow 2 \Rightarrow 3 \Rightarrow 4 \Rightarrow 5 \Rightarrow 1$

- $1 \Rightarrow 2$ 1. G is a tree (connected, acyclic)
 - 2. Every two nodes of G are joined by a unique path

Proof: (by contradiction)

Assume G is a tree that has two nodes connected by two different paths:

Then there exists a cycle!

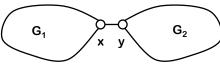
 $2 \Rightarrow 3$ $\,\,$ 2. Every two nodes of G are joined by a unique path

3. G is connected and n = e + 1

Proof: (by induction)

Assume true for every graph with < n nodes

Let G have n nodes and let x and y be adjacent



Let n_1 , e_1 be number of nodes and edges in G_1 Then $n = n_1 + n_2 = e_1 + e_2 + 2 = e + 1$ $3 \Rightarrow 4$ 3. G is connected and n = e + 1

4. G is acyclic and n = e + 1

Proof: (by contradiction)

Assume G is connected with n = e + 1, and G has a cycle containing k nodes

Note that the cycle has k nodes and k edges Start adding nodes and edges until you cover the whole graph

Number of edges in the graph will be at least n

 $4 \Rightarrow 5$ 4. G is acyclic and n = e + 1

5. G is acyclic and if any two nonadjacent points are joined by a line, the resulting graph has exactly one cycle

Proof:

If there are k connected components, each is a tree

For each tree: $n_i = e_i + 1$ Therefore, n = e + k

So k = 1

Corollary: Every nontrivial tree has at least two endpoints (points of degree 1)

Proof:

Assume all but one of the points in the tree have degree at least 2

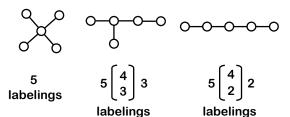
In any graph, sum of the degrees = 2e

Then the total number of edges in the tree is at least (2n-1)/2 = n - 1/2 > n - 1

How many labeled trees are there with three nodes?

How many labeled trees are there with four nodes?

How many labeled trees are there with five nodes?



125 labeled trees

How many labeled trees are there with n nodes?

3 labeled trees with 3 nodes

16 labeled trees with 4 nodes

125 labeled trees with 5 nodes

nⁿ⁻² labeled trees with n nodes

Cayley's Formula

The number of labeled trees on n nodes is nⁿ⁻²

The proof will use the correspondence principle

Each labeled tree on n nodes corresponds to

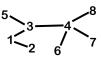
A sequence in {1,2,...,n}ⁿ⁻² (that is, n-2 numbers, each in the range [1..n])

How to make a sequence from a tree? Loop through i from 1 to n-2

Let L be the degree-1 node with the lowest label

Define the ith element of the sequence as the label of the node adjacent to L Delete the node L from the tree

Example:



1 3 3 4 4 4

How to reconstruct the unique tree from a sequence S:

Let I = {1, 2, 3, ..., n}

Loop until S is empty

Let i = smallest # in I but not in S

Let s = first label in sequence S

Add edge {i, s} to the tree

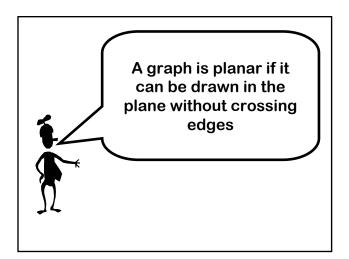
Delete i from I

Delete s from S

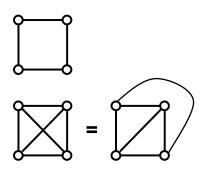
Spanning Trees

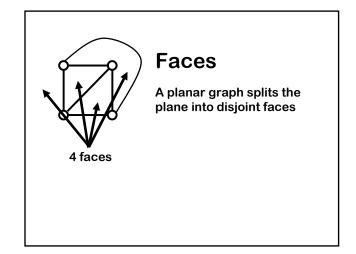
A spanning tree of a graph G is a tree that touches every node of G and uses only edges from G

Every connected graph has a spanning tree



Examples of Planar Graphs

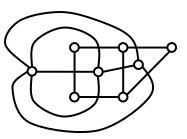




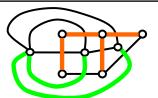
Euler's Formula

If G is a connected planar graph with n vertices, e edges and f faces, then n-e+f=2

Rather than using induction, we'll use the important notion of the dual graph



Dual = put a node in every face, and an edge between every adjacent face



Let G* be the dual graph of G

Let T be a spanning tree of G

Let T^* be the graph where there is an edge in dual graph for each edge in G-T

Then T* is a spanning tree for G*

$$n = e_T + 1$$
 $n + f = e_T + e_{T^*} + 2$
 $f = e_{T^*} + 1$ $= e + 2$

Corollary: Let G be a simple planar graph with n > 2 vertices. Then:

- 1. G has a vertex of degree at most 5
- 2. G has at most 3n 6 edges

Proof of 1:

In any graph, (sum of degrees) = 2e

Assume all vertices have degree ≥ 6

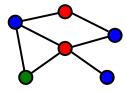
Then $e \ge 3n$

Furthermore, since G is simple, $3f \le 2e$

So $3n + 3f \le 3e$ and $3e + 6 \le 3e$

Graph Coloring

A coloring of a graph is an assignment of a color to each vertex such that no neighboring vertices have the same color



Graph Coloring

Arises surprisingly often in CS

Register allocation: assign temporary variables to registers for scheduling instructions. Variables that interfere, or are simultaneously active, cannot be assigned to the same register

Theorem: Every planar graph can be 6-colored

Proof Sketch (by induction):

Assume every planar graph with less than n vertices can be 6-colored

Assume G has n vertices

Since G is planar, it has some node v with degree at most 5

Remove v and color by Induction Hypothesis

Not too difficult to give an inductive proof of 5-colorability, using same fact that some vertex has degree ≤ 5

4-color theorem remains challenging!

Graph Spectra

We now move to a different representation of graphs that is extremely powerful, and useful in many areas of computer science: Al, information retrieval, computer vision, machine learning, CS theory,...

Adjacency Matrix

Suppose we have a graph G with n vertices. The adjacency matrix is the $n \times n$ matrix $A=[a_{ij}]$ with:

 $a_{ij} = 1$ if (i,j) is an edge

 $a_{ij} = 0$ if (i,j) is not an edge

Example

$A^2 =$

(i,j) in the matrix Ak

$$A^{2} = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} 3 & 2 & 2 & 2 \\ 2 & 3 & 2 & 2 \\ 2 & 2 & 3 & 2 \\ 2 & 2 & 2 & 3 \end{bmatrix}$$

Counting Paths

The number of paths of length k from node i to node j is the entry in position

Eigenvalues

Vector x is an eigenvector of A with eigenvalue $\boldsymbol{\lambda}$ if

$$Ax = \lambda x$$

A symmetric n x n matrix has at most n distinct real eigenvalues

Characteristic Polynomial

The characteristic polynomial of A is the polynomial :

$$P(x) = (x - \lambda_1) (x - \lambda_2)... (x - \lambda_n)$$

Example: K₄

$$A = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}$$

Eigenvectors: $\begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \\ -1 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \\ 1 \\ -1 \end{pmatrix}, \begin{pmatrix} -1 \\ -1 \\ 1 \\ 1 \end{pmatrix}$

$$P(x) = (x-3)(x+1)^3$$

If graph G has adjacency matrix A with characteristic polynomial

$$p_A(x) = x^n + c_1 x^{n-1} + c_2 x^{n-2} + ... + c_n$$

Then:

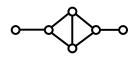
$$c_1 = 0$$

 $-c_2$ = # of edges in G

 $-c_3$ = twice # of triangles in G

Two different graphs with the same spectrum

$$p_A(x) = x^6 - 7x^4 - 4x^3 + 7x^2 + 4x - 1$$



•

Trees

- Counting Trees
- Different Characterizations

Planar Graphs

- Definition
- Euler's Theorem
- Coloring Planar Graphs

Study Bee

Adjacency Matrix

- Definition
- Useful for counting