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15-251
Great Theoretical Ideas 

in Computer Science

Deterministic 
Finite Automata

Lecture 11 (February 21, 2006)

Let me show you a 
machine so simple 

that you can 
understand it in less 

than two minutes
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The machine accepts a string if the 
process ends in a double circle
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Anatomy of a Deterministic Finite 
Automaton

states

states

q0

q1

q2

q3start state (q0)

accept states (F)

An alphabet Σ is a finite set (e.g., Σ = {0,1})

A string over Σ is a finite-length sequence of 
elements of Σ

For x a string, |x| is the length of x

The unique string of length 0 will be denoted 
by ε and will be called the empty or null string

Notation

A language over Σ is a set of strings over Σ

Q is the set of states

Σ is the alphabet

δ : Q × Σ → Q  is the transition function

q0 ∈ Q is the start state

F ⊆ Q is the set of accept states

A finite automaton is a 5-tuple M = (Q, Σ, δ, q0, F) 

L(M) = the language of machine M
= set of all strings machine M accepts

Q  = {q0, q1, q2, q3}

Σ = {0,1}

δ : Q × Σ → Q transition function*
q0 ∈ Q is start state

F  = {q1, q2} ⊆ Q accept states

M = (Q, Σ, δ, q0, F)  where
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L(M) = All strings of 0s and 1s

0,1q0

L(M) = ∅

q0 q1

0 0
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L(M) = { w | w has an even number of 1s}

Build an automaton that accepts all and only 
those strings that contain 001
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A language is regular if it is 
recognized by a deterministic 

finite automaton

L = { w | w contains 001} is regular

L = { w | w has an even number of 1s} is regular

Union Theorem
Given two languages, L1 and L2, define 
the union of L1 and L2 as 

L1 ∪ L2 = { w | w ∈ L1 or w ∈ L2 } 

Theorem: The union of two regular 
languages is also a regular language

Theorem: The union of two regular 
languages is also a regular language

Proof Sketch: Let 
M1 = (Q1, Σ, δ1, q0, F1)  be finite automaton for L1

and 
M2 = (Q2, Σ, δ2, q0, F2) be finite automaton for L2

We want to construct a finite automaton 
M = (Q, Σ, δ, q0, F) that recognizes L = L1 ∪ L2

1

2

Idea: Run both M1 and M2 at the same time!

Q = pairs of states, one from M1 and one from M2

= { (q1, q2) | q1 ∈ Q1 and q2 ∈ Q2 }

= Q1 × Q2
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Theorem: The union of two regular 
languages is also a regular language
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Automaton for Union

Automaton for Intersection
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Theorem: The union of two regular 
languages is also a regular language

Corollary: Any finite language is 
regular
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The Regular Operations

Union: A ∪ B = { w | w ∈ A or w ∈ B } 

Intersection: A ∩ B = { w | w ∈ A and w ∈ B } 

Negation: ¬A = { w | w ∉ A } 

Reverse: AR = { w1 …wk | wk …w1 ∈ A }

Concatenation: A ⋅ B = { vw | v ∈ A and w ∈ B }

Star: A* = { w1 …wk | k ≥ 0 and each wi ∈ A }

Regular Languages Are 
Closed Under The 

Regular Operations

We have seen part of the proof for 
Union. The proof for intersection is very 
similar. The proof for negation is easy.

Input: Text T of length t, string S of length n

The “Grep” Problem

Problem: Does string S appear inside text T?

a1, a2, a3, a4, a5, …, at

Naïve method: 

Cost: Roughly nt comparisons

Automata Solution
Build a machine M that accepts any string 
with S as a consecutive substring

Feed the text to M

Cost:

As luck would have it, the Knuth, Morris, 
Pratt algorithm builds M quickly

t comparisons + time to build M
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Grep

Coke Machines

Thermostats (fridge)

Elevators

Train Track Switches

Lexical Analyzers for Parsers

Real-life Uses of DFAs
Are all 

languages 
regular?

i.e., a bunch of a’s followed by an 
equal number of b’s

Consider the language L = { anbn | n > 0 }

No finite automaton accepts this language

Can you prove this?

anbn is not regular.  
No machine has 
enough states to 
keep track of the 
number of a’s it 
might encounter
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That is a fairly weak 
argument 

Consider the following 
example…

L = strings where the # of occurrences of 
the pattern ab is equal to the number of 
occurrences of the pattern ba

Can’t be regular.  No machine has 
enough states to keep track of the 
number of occurrences of ab

M accepts only the strings with an 
equal number of ab’s and ba’s!

b

b a

b

a

a

a

ba

b
Let me show you a 

professional strength 
proof that anbn is not 

regular…
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Pigeonhole principle:

Given n boxes and m > n 
objects, at least one box 
must contain more than 
one object

Letterbox principle:
If the average number of 
letters per box is x, then 
some box will have at 
least x letters (similarly, 
some box has at most x)

Theorem:  L= {anbn | n > 0 } is not regular

Proof (by contradiction):

Assume that L is regular

Then there exists a machine M with k 
states that accepts L

For each 0 ≤ i ≤ k, let Si be the state M is in 
after reading ai

∃i,j ≤ k  such that Si = Sj, but i ≠ j

M will do the same thing on aibi and ajbi

But a valid M must reject ajbi and accept aibi

Study Bee

Deterministic Finite 
Automata
• Definition
• Testing if they accept a string
• Building automata

Regular Languages
• Definition
• Closed Under Union, 
Intersection, Negation
• Using Pigeonhole Principle to 
show that a language ain’t regular


