
1

15-251
Great Theoretical Ideas

in Computer Science

Deterministic
Finite Automata

Lecture 11 (February 21, 2006)

Let me show you a
machine so simple

that you can
understand it in less

than two minutes

0
0,1

00

1

1

1

The machine accepts a string if the
process ends in a double circle

2

0
0,1

00

1

1

1

Anatomy of a Deterministic Finite
Automaton

states

states

q0

q1

q2

q3start state (q0)

accept states (F)

An alphabet Σ is a finite set (e.g., Σ = {0,1})

A string over Σ is a finite-length sequence of
elements of Σ

For x a string, |x| is the length of x

The unique string of length 0 will be denoted
by ε and will be called the empty or null string

Notation

A language over Σ is a set of strings over Σ

Q is the set of states

Σ is the alphabet

δ : Q × Σ → Q is the transition function

q0 ∈ Q is the start state

F ⊆ Q is the set of accept states

A finite automaton is a 5-tuple M = (Q, Σ, δ, q0, F)

L(M) = the language of machine M
= set of all strings machine M accepts

Q = {q0, q1, q2, q3}

Σ = {0,1}

δ : Q × Σ → Q transition function*
q0 ∈ Q is start state

F = {q1, q2} ⊆ Q accept states

M = (Q, Σ, δ, q0, F) where

q2q0q3

q2q3q2

q2q2q1

q1q0q0

10δ*
q2

0
0,1

00

1

1

1

q0

q1

q3

M

3

0,1q0

L(M) = All strings of 0s and 1s

0,1q0

L(M) = ∅

q0 q1

0 0

1

1

L(M) = { w | w has an even number of 1s}

Build an automaton that accepts all and only
those strings that contain 001

4

A language is regular if it is
recognized by a deterministic

finite automaton

L = { w | w contains 001} is regular

L = { w | w has an even number of 1s} is regular

Union Theorem
Given two languages, L1 and L2, define
the union of L1 and L2 as

L1 ∪ L2 = { w | w ∈ L1 or w ∈ L2 }

Theorem: The union of two regular
languages is also a regular language

Theorem: The union of two regular
languages is also a regular language

Proof Sketch: Let
M1 = (Q1, Σ, δ1, q0, F1) be finite automaton for L1

and
M2 = (Q2, Σ, δ2, q0, F2) be finite automaton for L2

We want to construct a finite automaton
M = (Q, Σ, δ, q0, F) that recognizes L = L1 ∪ L2

1

2

Idea: Run both M1 and M2 at the same time!

Q = pairs of states, one from M1 and one from M2

= { (q1, q2) | q1 ∈ Q1 and q2 ∈ Q2 }

= Q1 × Q2

5

Theorem: The union of two regular
languages is also a regular language

q0 q1

0
0

1

1

p0 p1

1
1

0

0

q0,p0 q1,p0

1

1

q0,p1 q1,p1

1

1

00
00

Automaton for Union

Automaton for Intersection

q0,p0 q1,p0

1

1

q0,p1 q1,p1

1

1

00
00

Theorem: The union of two regular
languages is also a regular language

Corollary: Any finite language is
regular

6

The Regular Operations

Union: A ∪ B = { w | w ∈ A or w ∈ B }

Intersection: A ∩ B = { w | w ∈ A and w ∈ B }

Negation: ¬A = { w | w ∉ A }

Reverse: AR = { w1 …wk | wk …w1 ∈ A }

Concatenation: A ⋅ B = { vw | v ∈ A and w ∈ B }

Star: A* = { w1 …wk | k ≥ 0 and each wi ∈ A }

Regular Languages Are
Closed Under The

Regular Operations

We have seen part of the proof for
Union. The proof for intersection is very
similar. The proof for negation is easy.

Input: Text T of length t, string S of length n

The “Grep” Problem

Problem: Does string S appear inside text T?

a1, a2, a3, a4, a5, …, at

Naïve method:

Cost: Roughly nt comparisons

Automata Solution
Build a machine M that accepts any string
with S as a consecutive substring

Feed the text to M

Cost:

As luck would have it, the Knuth, Morris,
Pratt algorithm builds M quickly

t comparisons + time to build M

7

Grep

Coke Machines

Thermostats (fridge)

Elevators

Train Track Switches

Lexical Analyzers for Parsers

Real-life Uses of DFAs
Are all

languages
regular?

i.e., a bunch of a’s followed by an
equal number of b’s

Consider the language L = { anbn | n > 0 }

No finite automaton accepts this language

Can you prove this?

anbn is not regular.
No machine has
enough states to
keep track of the
number of a’s it
might encounter

8

That is a fairly weak
argument

Consider the following
example…

L = strings where the # of occurrences of
the pattern ab is equal to the number of
occurrences of the pattern ba

Can’t be regular. No machine has
enough states to keep track of the
number of occurrences of ab

M accepts only the strings with an
equal number of ab’s and ba’s!

b

b a

b

a

a

a

ba

b
Let me show you a

professional strength
proof that anbn is not

regular…

9

Pigeonhole principle:

Given n boxes and m > n
objects, at least one box
must contain more than
one object

Letterbox principle:
If the average number of
letters per box is x, then
some box will have at
least x letters (similarly,
some box has at most x)

Theorem: L= {anbn | n > 0 } is not regular

Proof (by contradiction):

Assume that L is regular

Then there exists a machine M with k
states that accepts L

For each 0 ≤ i ≤ k, let Si be the state M is in
after reading ai

∃i,j ≤ k such that Si = Sj, but i ≠ j

M will do the same thing on aibi and ajbi

But a valid M must reject ajbi and accept aibi

Study Bee

Deterministic Finite
Automata
• Definition
• Testing if they accept a string
• Building automata

Regular Languages
• Definition
• Closed Under Union,
Intersection, Negation
• Using Pigeonhole Principle to
show that a language ain’t regular

