15-251

Great Theoretical Ideas in Computer Science

Algebraic Structures: Groups, Rings and Fields

Lecture 10 (February 16, 2006)

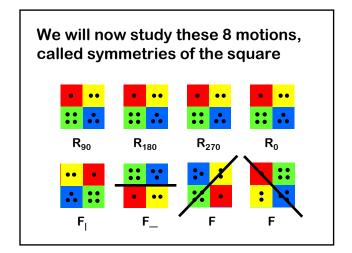
Today we are going to study the abstract properties of binary operations

Rotating a Square in Space



Imagine we can pick up the square, rotate it in any way we want, and then put it back on the black frame In how many different ways can we put the square back on the frame?

R₉₀
R₁₈₀
R₂₇₀
R₀
F₁
F
F



Symmetries of the Square

 $Y_{SQ} = \{ R_0, R_{90}, R_{180}, R_{270}, F_|, F_-, F_-, F_- \}$

Composition

Define the operation "•" to mean "first do one symmetry, and then do the next"

For example,

R₉₀ • R₁₈₀ means "first rotate 90° clockwise and then 180°"

 $= R_{270}$

 $F_{\parallel} \bullet R_{90}$ means "first flip through vertical axis and then rotate 90°"

= F

Question: if a,b $\in Y_{SQ}$, does a \bullet b $\in Y_{SQ}$? Yes!

	R_0	R ₉₀	R ₁₈₀	R ₂₇₀	F	F_	F	F
R_0	R_0	R ₉₀	R ₁₈₀	R ₂₇₀	F	F_	F	F
R ₉₀	R ₉₀	R ₁₈₀	R ₂₇₀	R_0	F	F	F	F_
R ₁₈₀	R ₁₈₀	R ₂₇₀	R_0	R ₉₀	F	F	F	F
R ₂₇₀	R ₂₇₀	R_0	R ₉₀	R ₁₈₀	F	F	F_	F
F	F_	F	F_	F	R_0	R ₁₈₀	R ₉₀	R ₂₇₀
F_	F_	F	F	F	R ₁₈₀	R_0	R ₂₇₀	R ₉₀
F	F	F_	F	F _l	R ₂₇₀	R ₉₀	R_0	R ₁₈₀
F	F	F	F	F_	R ₉₀	R ₂₇₀	R ₁₈₀	R_0

Some Formalism

If S is a set, $S \times S$ is:

the set of all (ordered) pairs of elements of S

$$S \times S = \{ (a,b) \mid a \in S \text{ and } b \in S \}$$

If S has n elements, how many elements does $S \times S$ have? n^2

Formally, \bullet is a function from $Y_{SQ} \times Y_{SQ}$ to Y_{SQ}

$$\bullet: Y_{SQ} \times Y_{SQ} \to Y_{SQ}$$

As shorthand, we write •(a,b) as "a • b"

Binary Operations

"•" is called a binary operation on Y_{SO}

Definition: A binary operation on a set S is a function $lack : S \times S \to S$

Example:

The function f: $\mathbb{N} \times \mathbb{N} \to \mathbb{N}$ defined by f(x,y) = xy + y is a binary operation on \mathbb{N}

Associativity

A binary operation ♦ on a set S is associative if:

for all $a,b,c \in S$, (a + b) + c = a + (b + c)

Examples:

Is f: $\mathbb{N} \times \mathbb{N} \to \mathbb{N}$ defined by f(x,y) = xy + y associative?

(ab + b)c + c = a(bc + c) + (bc + c)? NO!

Is the operation • on the set of symmetries of the square associative? YES!

Commutativity

A binary operation ♦ on a set S is commutative if

For all $a,b \in S$, a + b = b + a

Is the operation • on the set of symmetries of the square commutative? NO!

$$R_{90} \bullet F_{\parallel} \neq F_{\parallel} \bullet R_{90}$$

Identities

R₀ is like a null operation

Is this true: $\forall a \in Y_{SQ}$, $a \cdot R_0 = R_0 \cdot a = a$? YES!

R₀ is called the identity of • on Y_{SQ}

In general, for any binary operation \bullet on a set S, an element $e \in S$ such that for all $a \in S$, $e \bullet a = a \bullet e = a$ is called an identity of \bullet on S

Inverses

Definition: The inverse of an element $a \in Y_{SQ}$ is an element b such that:

$$a \cdot b = b \cdot a = R_0$$

Examples:

R₉₀ inverse: R₂₇₀

R₁₈₀ inverse: R₁₈₀

F_| inverse: F_|

Every element in Y_{SQ} has a unique inverse

	R_0	R ₉₀	R ₁₈₀	R ₂₇₀	F	F_	F	F
R_0	R_0	R ₉₀	R ₁₈₀	R ₂₇₀	F	F_	F	F
R_{90}	R ₉₀	R ₁₈₀	R ₂₇₀	R_0	F	F	F	F_
R ₁₈₀	R ₁₈₀	R ₂₇₀	R_0	R ₉₀	F	F_	F	F
R ₂₇₀	R ₂₇₀	R_0	R ₉₀	R ₁₈₀	F	F	F	F
F	F	F	F	F	R_0	R ₁₈₀	R ₉₀	R ₂₇₀
F_	F_	F	F	F	R ₁₈₀	R_0	R ₂₇₀	R ₉₀
F	F	F_	F	F	R ₂₇₀	R ₉₀	R_0	R ₁₈₀
F	F	F	F	F_	R ₉₀	R ₂₇₀	R ₁₈₀	R_0

Groups

A group G is a pair (S, •), where S is a set and • is a binary operation on S such that:

- 1. ♦ is associative
- 2. (Identity) There exists an element $e \in S$ such that:

e + a = a + e = a, for all $a \in S$

3. (Inverses) For every $a \in S$ there is $b \in S$ such that: $a \cdot b = b \cdot a = e$

If ♦ is commutative, then G is called a commutative group

Examples

Is $(\mathbb{N},+)$ a group?

Is + associative on N? YES!

Is there an identity? YES: 0

Does every element have an inverse? NO!

(\mathbb{N} ,+) is **NOT** a group

Examples

Is (Z,+) a group?

Is + associative on Z? YES!

Is there an identity? YES: 0

Does every element have an inverse? YES!

(Z,+) is a group

Examples

Is (Y_{SQ}, •) a group?

Is • associative on Y_{SQ}? YES!

Is there an identity? YES: R₀

Does every element have an inverse? YES!

(Y_{SQ}, •) is a group

Examples

Is (Z_n,+) a group?

(Z_n is the set of integers modulo n)

Is + associative on Z_n ? YES!

Is there an identity? YES: 0

Does every element have an inverse? YES!

 $(Z_N, +)$ is a group

Identity Is Unique

Theorem: A group has at most one identity element

Proof:

Suppose e and f are both identities of G=(S, •)

Then f = e + f = e

Inverses Are Unique

Theorem: Every element in a group has a unique inverse

Proof:

Suppose b and c are both inverses of a

Then b = b + e = b + (a + c) = (b + a) + c = c

A group G=(S, ♦) is finite if S is a finite set

Define |G| = |S| to be the order of the group (i.e. the number of elements in the group)

What is the group with the least number of elements? $G = (\{e\}, *)$ where e * e = e

How many groups of order 2 are there?

Generators

A set $T \subseteq S$ is said to generate the group $G = (S, \bullet)$ if every element of S can be expressed as a finite product of elements in T

Question: Does {R₉₀} generate Y_{SO}? NO!

Question: Does {S_i, R₉₀} generate Y_{SQ}? YES!

An element $g \in S$ is called a generator of G=(S, •) if $\{g\}$ generates G

Does Y_{SQ} have a generator? NO!

Generators For Z_n

Any $a \in Z_n$ such that GCD(a,n) = 1 generates Z_n

Claim: If GCD(a,n) = 1, then the numbers a, 2a, ..., (n-1)a, na are all distinct modulo n

Proof (by contradiction):

Suppose xa = ya (mod n) for $x,y \in \{1,...,n\}$ and $x \neq y$

Then n | a(x-y)

Since GCD(a,n) = 1, then $n \mid (x-y)$, which cannot happen

If G = (S,
$$\spadesuit$$
), we use aⁿ denote (a \spadesuit a \spadesuit ... \spadesuit a)

n times

Definition: The order of an element a of G is the smallest positive integer n such that an = e

The order of an element can be infinite!

Example: The order of 1 in the group (Z,+) is infinite

What is the order of F_1 in Y_{SQ} ? 2

What is the order of R_{90} in Y_{SQ} ? 4

Orders

Theorem: Let x be an element of G. The order of x divides the order of G

Corollary: If p is prime, $a^{p-1} = 1 \pmod{p}$

(This is called Fermat's Little Theorem)

 $\{1,...,p-1\}$ is a group under multiplication modulo p

Lord Of The Rings

We can define more than one operation on a set

For example, in \mathbf{Z}_{n} we can do addition and multiplication modulo \mathbf{n}

A ring is a set together with two operations

Definition:

A ring R is a set together with two binary operations + and x, satisfying the following properties:

- 1. (R,+) is a commutative group
- 2. x is associative
- 3. The distributive laws hold in R: $(a + b) \times c = (a \times c) + (b \times c)$ $a \times (b + c) = (a \times b) + (a \times c)$

Fields

Definition:

A field F is a set together with two binary operations + and x, satisfying the following properties:

- 1. (F,+) is a commutative group
- 2. (F-{0},x) is a commutative group
- 3. The distributive law holds in F: $(a + b) \times c = (a \times c) + (b \times c)$

In The End...

Why should I care about any of this?

Group Theory helps you get a date!

Groups, Rings and Fields are examples of the principle of abstraction: the particulars of the objects are abstracted into a few simple properties

All the results carry over to any group

Symmetries of the Square Compositions

Groups

Binary Operation Identity and Inverses Basic Facts: Inverses Are Unique Generators

Study Bee

Rings and Fields
Definition