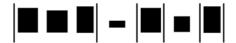
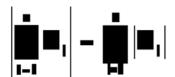


Not everything that can be counted counts, and not everything that counts can be counted.

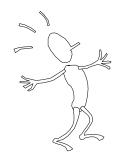
A. Einstein



Addition Rule


Let A and B be two <u>disjoint</u> finite sets.

The size of $A \cup B$ is the sum of the size of A and the size of B.



Corollary (by induction)

Let A_1 , A_2 , A_3 , ..., A_n be disjoint, finite sets.

Suppose I roll a white die and a black die.

S = Set of all outcomes where the dice show different values.

T = set of outcomes where the two dice agree.

Two ways of counting...

|5| =

S = Set of all outcomes where the dice show different values.

T = set of outcomes where the two dice agree.

S = Set of all outcomes where the black die shows a smaller number than the white die. |S| = ?

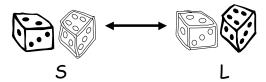
 A_i = set of outcomes where the black die says i and the white die says something larger.

S = Set of all outcomes where the black die shows a smaller number than the white die. |S| = ?

L = set of all outcomes where the black die shows a larger number than the white die.

It is clear by symmetry that |S| = |L|.

Therefore
$$|S| = 15$$


It is <u>clear</u> by symmetry that |S| = |L|.

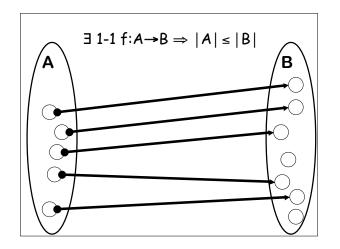
Pinning down the idea of symmetry by exhibiting a correspondence.

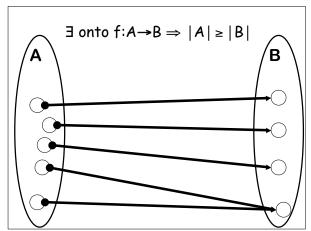
Let's put each outcome in S in correspondence with an outcome in L by swapping the color of the dice.

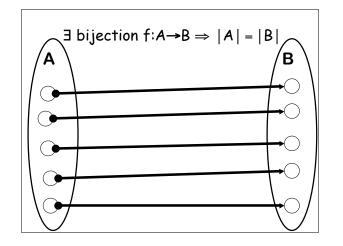
Pinning down the idea of symmetry by exhibiting a correspondence.

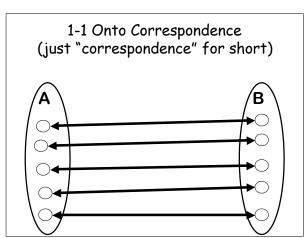
Let's put each outcome in S in correspondence with an outcome in L by swapping the color of the dice.

Each outcome in S gets matched with exactly one outcome in L, with none left over


Thus: |S| = |L|.


Let $f:A \rightarrow B$ be a function from a set A to a set B.

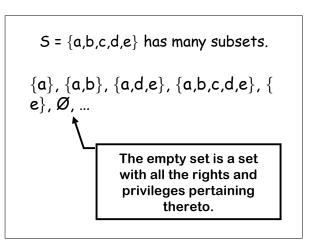

What is a function???


Read 21-127's textbook, ch. 6

Let $f:A \rightarrow B$ be a function from a set A to a set B. f is 1-1 (or injective) if and only if $\forall x,y \in A, \ x \neq y \Rightarrow f(x) \neq f(y)$ f is onto (or surjective) if and only if $\forall z \in B \ \exists x \in A \ f(x) = z$ There Exists

Correspondence Principle

If two finite sets can be placed into 1-1 onto correspondence, then they have the same size.


Correspondence Principle

If two finite sets can be placed into 1-1 onto correspondence, then they have the same size.

It's one of the most important mathematic al ideas of all time!

Question: How many n-bit sequences are there?			
000000	$\leftarrow \rightarrow$	0	
000001	$\leftarrow \rightarrow$	1	
000010	$\leftarrow \rightarrow$	2	
000011	$\leftarrow \rightarrow$	3	
111111	 ←→	2 ⁿ -1	
2 ⁿ sequences			

Question: How many subsets can be formed from the elements of a 5-element set?

а	Ь	С	d	e
0	1	1	0	1
	{b	С		e }

1 means "TAKE IT" 0 means "LEAVE IT" Question: How many subsets can be formed from the elements of a 5-element set?

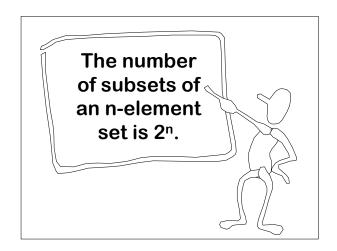
а	Ь	С	d	e
0	1	1	0	1

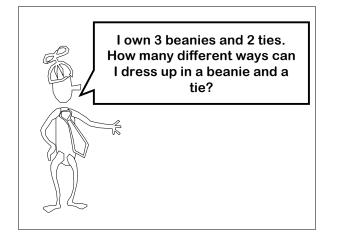
Each subset corresponds to a 5-bit sequence (using the "take it or leave it" code)

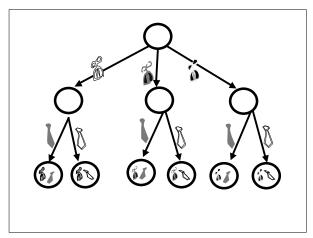
$$S = \{a_1, a_2, a_3, ..., a_n\}$$

 $b = b_1b_2b_3...b_n$

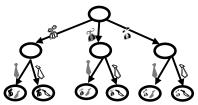
$$f(b) = \{a_i | b_i = 1\}$$

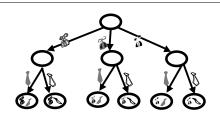

$$f(b) = \{a_i | b_i = 1\}$$


f is 1-1: Any two distinct binary sequences b and b' have a position i at which they differ. Hence, f(b) is not equal to f(b') because they disagree on element $a_{\rm i}$.

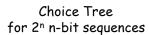

a_1	a_2	a ₃	 an
b_1	b ₂	b ₃	 b_n

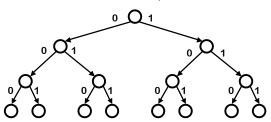
$$f(b) = \{a_i \mid b_i=1\}$$


f is onto: Let S be a subset of $\{a_1,...,a_n\}$. Let $b_k = 1$ if a_k in S; $b_k = 0$ otherwise. $f(b_1b_2...b_n) = S$.

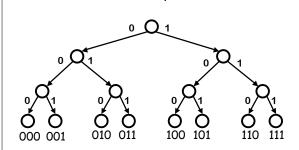


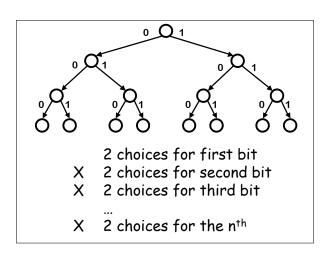
Choice Tree




A <u>choice tree</u> is a rooted, directed tree with an object called a "choice" associated with each edge and a label on each leaf.

A choice tree provides a "choice tree representation" of a set S, if


Each leaf label is in S
 No two leaf labels are the same



We can use a "choice tree" to represent the construction of objects of the desired type.

2ⁿ n-bit sequences

Label each leaf with the object constructed by the choices along the path to the leaf.

We will now combine the correspondence principle with the leaf counting lemma to make a powerful counting rule for choice tree representation.

Product Rule

IF S has a choice tree representation with P_1 possibilities for the first choice, P_2 for the second, and so on,

THEN

there are $P_1P_2P_3...P_n$ objects in S

Product Rule

Suppose that all objects of a type S can be constructed by a sequence of choices with P_1 possibilities for the first choice, P_2 for the second, and so on.

Τŀ

- 1) Each sequence of choices constructs an object of type S

 AND
- 2) No two different sequences create the same object

THEN

there are $P_1P_2P_3...P_n$ objects of type S.

How many different orderings of deck with 52 cards?

What type of object are we making?

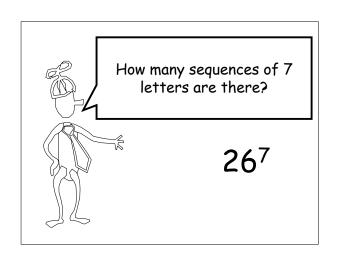
Ordering of a deck

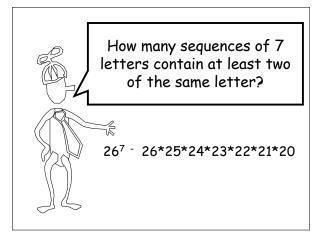
Construct an ordering of a deck by a sequence of 52 choices:

52 possible choices for the first card; 51 possible choices for the second card; 50 possible choices for the third card;

1 possible choice for the 52cond card.

How many different orderings of deck with 52 cards?


By the product rule:


52 * 51 * 50 * ... * 3 * 2 * 1 = 52!

52 "factorial" orderings

A <u>permutation</u> or <u>arrangement</u> of n objects is an ordering of the objects.

The number of permutations of n distinct objects is n!

Sometimes it is easiest to count the number of objects with property Q, by counting the number of objects that do not have property Q.

Ordered Versus Unordered

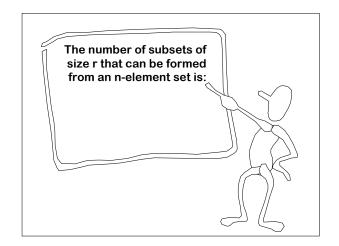
From a set of $\{1,2,3\}$ how many ordered pairs can be formed?

How many unordered pairs?

Ordered Versus Unordered

From a deck of 52 cards how many ordered pairs can be formed?

• 52 * 51


How many unordered 5 card hands? pairs?

• $52*51/2 \leftarrow \text{divide by overcount}$

A <u>combination</u> or <u>choice</u> of r out of n objects is an (unordered) set of r of the n objects.

The number of r combinations of n objects:

n choose r

How many 8 bit sequences have two 0's and six 1's?

1) Choose the set of 2 positions to put the 0's. The 1's are forced.

2) Choose the set of 6 positions to put the 1's. The 0's are forced.

How many 8 bit sequences have two 0's and six 1's?

Tempting, but incorrect:

8 ways to place first 0 times
7 ways to place second 0

Violates condition 2 of product rule! Choosing position i for the first 0 and then position j for the second 0 gives the same sequence as choosing position j for the first 0 and position i for the second.

How many hands have at least 3 aces?

24 - 21 ways of picking 6 of tile 21 ares.

[49] — illing ways of pjeking 2 eads from the remaining 49 eads. [2]

4|∞ilil**7/6 – 41/0**4!

How many hands have at least 3 aces?

How many hands have exactly 3 aces?

(21) | 12| mays රට්ලර්ම්රිය ම් රට්මර් වියනය. |වා

[45] | 1 | - 11108 ways of light ting Nearth mon-asserable.

 $49 \times 111023 = 42 \times 102$

How many hands have exactly 4 aces?

(24) — II wayofi piteliing 21ofi liite 21 aws. (24)

45 ways of pielsing one of tile remaining cards

4512 + 48 = 4560

4704 ≠ **4560**

At least one of the two counting arguments is not correct.

Four different sequences of choices produce the same hand

/64) | වේ -- ම් wayachpitéShyBchtifteBaces. | මේ

(EE) — Hill Clarage of held sing it condition the remaining EE co dis.

51:0111776-597051

<i>A</i> ♣ <i>A</i> ♦ <i>A</i> ♥	A♠ K♦
<i>A</i> ♣ <i>A</i> ♦ <i>A</i> ♠	A♥ K♦
<i>A</i> ♣ <i>A</i> ♠ <i>A</i> ♥	A♦ K♦
<i>A</i> ♠ <i>A</i> ♦ <i>A</i> ♥	A♣ K♦

- 1) Choose 3 of 4 aces
- 2) Choose 2 non-ace cards

A♣ Q♠ A♦ A♥ K♦

The aces came from the first choice and the non-aces came from the second choice.

- 1) Choose 4 of 4 aces
- 2) Choose 1 non-ace

A♣ A♠ A♦ A♥ K♦

The aces came from the first choice and the non-ace came from the second choice.

- Study Bee
- Correspondence Principle
 If two finite sets can be
 placed into 1-1 onto
 correspondence, then they
 have the same size
- · Choice Tree
- Product Rule two conditions
- Counting by complementing it's sometimes easier to count the "opposite" of something
- Binomial coefficient
 Number of r sets of an n set