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Counting I: Bijection and Choice
Trees

Carnegie Mellon UniversityJan 31, 2006Lecture 5

CS 15-251       Spring 2006Victor
Adamchik

Great Theoretical Ideas In Computer Science

Not everything that can be
counted counts, and not everything
that counts can be counted.

                                     A. Einstein

If I have 14 teeth on the top and
12 teeth on the bottom, how many

teeth do I have in all? How many seats in this

auditorium?

Hint:
Count without counting!



2

Addition Rule

Let A and B be two disjoint finite sets.

The size of A B is the sum of
the size of A and the size of B.

Corollary (by induction)

Let A1, A2, A3, …, An be disjoint, finite
sets.

Suppose I roll a
white die and a black die.

S  Set of all outcomes where the
dice show different values.

S  = ?

T  set of outcomes where the two
dice agree.

Two ways of counting…

                        |S| =
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S  Set of all outcomes where the
dice show different values.

S  = ?

T  set of outcomes where the two
dice agree.

S  Set of all outcomes where the
black die shows a smaller number

than the white die.       S  = ?

Ai  set of outcomes where the black
die says i and the white die says
something larger.

S  Set of all outcomes where the
black die shows a smaller number

than the white die.      S  = ?

L  set of all outcomes where the black
die shows a larger number than the
white die.

S  + L  = 30
It is clear by symmetry that S  = L .

Therefore  S  = 15

It is clear by symmetry that S  = L .



4

Pinning down the idea of symmetry by
exhibiting a correspondence.

Let’s put each outcome in S in
correspondence with an outcome in L
by swapping the color of the dice.

S L

Let’s put each outcome in S in
correspondence with an outcome in L
by swapping the color of the dice.

Pinning down the idea of symmetry by
exhibiting a correspondence.

Each outcome in S gets matched with
exactly one outcome in L, with none left
over.

Thus: S  = L .

What is a function???

Read 21-127’s textbook, ch. 6

Let f:A B
be a function from a set A to a set B.

Let f:A B
be a function from a set A to a set B.

f is 1-1 (or injective) if and only if

x,y A,  x  y  f(x)  f(y)

f is onto (or surjective) if and only if

z B  x A  f(x) = z

For Every

There

Exists
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 1-1 f:A B   A   B

A B

 onto f:A B   A   B

A B

 bijection f:A B   A  = B

A B

1-1 Onto Correspondence
(just “correspondence” for short)

A B
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Correspondence Principle

If two finite sets can be
placed into 1-1 onto

correspondence, then they
have the same size.

Correspondence Principle

If two finite sets can be placed into 1-1 onto
correspondence, then they have the same
size.

It’s one of

the most

important

mathematic

al ideas of

all time!

Question: How many n-bit
sequences are there?

000000 0

000001 1

000010 2

000011 3

...

1…11111 2n-1

2n sequences

S = {a,b,c,d,e} has many subsets.

{a}, {a,b}, {a,d,e}, {a,b,c,d,e}, {
e}, Ø, …

The empty set is a set

with all the rights and

privileges pertaining

thereto.
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Question: How many subsets can be
formed from the elements of a 5-

element set?

10110
edcba

{b   c            e}

1 means “TAKE IT”
0 means “LEAVE IT”

Question: How many subsets can be
formed from the elements of a 5-

element set?

10110
edcba

Each subset corresponds to a
5-bit sequence  (using the
“take it or leave it” code)

S = {a1, a2, a3,…, an}

 b = b1b2b3…bn

bn…b3b2b1

an…a3a2a1

f(b) = {ai | bi=1 } 

f is 1-1: Any two distinct binary sequences b
and b’ have a position i at which they differ.
Hence, f(b) is not equal to f(b’) because they
disagree on element ai.

bn…b3b2b1

an…a3a2a1

f(b) = {ai | bi=1 } 
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f is onto: Let S be a subset of
{a1,…,an}. Let bk = 1 if ak in S; bk = 0
otherwise. f(b1b2…bn) = S.

bn…b3b2b1

an…a3a2a1

f(b) = {ai | bi=1 } 

The number

of subsets of

an n-element

set is 2n.

I own 3 beanies and 2 ties.

How many different ways can

I dress up in a beanie and a

tie?
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A choice tree is a rooted, directed
tree with an object called a “choice”

associated with each edge and a
label on each leaf.

Choice Tree

A choice tree  provides a “choice tree
representation” of a set S, if

1) Each leaf label is in S
2) No two leaf labels are the same

0 1 0 10 1 0 1

0 1 0 1

0 1

Choice Tree
for 2n n-bit sequences

We can use a “choice tree” to
represent the construction of
objects of the desired type.

0 1 0 10 1 0 1

0 1 0 1

0 1

2n n-bit sequences

000 001 010 011 100 101 110 111

Label each leaf with the object constructed
by the choices along the path to the leaf.
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0 1 0 10 1 0 1

0 1 0 1

0 1

2 choices for first bit
X 2 choices for second bit
X 2 choices for third bit

…
X 2 choices for the nth

We will now combine
the correspondence
principle with the

leaf counting lemma
to make a powerful
counting rule for

choice tree
representation.

Product Rule

IF S has a choice tree representation with
  P1 possibilities for the first choice,
  P2 for the second, and so on,

THEN

there are P1P2P3…Pn objects in S

Product Rule
Suppose that all objects of a type S can be
constructed by a sequence of choices with P1
possibilities for the first choice, P2 for the
second, and so on.

IF

1) Each sequence of choices constructs an
object of type S

AND

2) No two different sequences create the
same object

THEN

there are P1P2P3…Pn objects of type S.
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How many different orderings of
deck with 52 cards?

What type of object are we making?

• Ordering of a deck

Construct an ordering of a deck by a
sequence of 52 choices:

52 possible choices for the first card;

51 possible choices for the second card;

50 possible choices for the third card;

…

1 possible choice for the 52cond card.

How many different orderings of
deck with 52 cards?

By the product rule:

52 * 51 * 50 * … * 3 * 2 * 1 = 52!

52 “factorial” orderings

A permutation or arrangement of n
objects is an ordering of the objects.

The number of
permutations of n

distinct objects is n!

How many sequences of 7
letters are there?

267
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How many sequences of 7
letters contain at least two

of the same letter?

267  -   26*25*24*23*22*21*20

Sometimes it is easiest
to count the number of
objects with property Q,
by counting the number
of objects that do not
have property Q.

Ordered Versus Unordered

From a set of {1,2,3} how many ordered
pairs can be formed?

How many unordered pairs?

Ordered Versus Unordered

How many unordered 5 card hands?
pairs?

• 52*51 / 2   divide by overcount

From a deck of 52 cards how many
ordered pairs can be formed?

• 52 * 51
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A combination or choice of r out of n
objects is an (unordered) set of r of

the n objects.
The number of r combinations of n
objects:

n choose r

The number of subsets of

size r that can be formed

from an n-element set is:

How many 8 bit sequences
have two 0’s and six 1’s?

1) Choose the set of 2 positions to put
the 0’s. The 1’s are forced.

2) Choose the set of 6 positions to put
the 1’s. The 0’s are forced.

How many 8 bit sequences
have two 0’s and six 1’s?

Tempting, but incorrect:

8 ways to place first 0 times

7 ways to place second 0

Violates condition 2 of product rule!
Choosing position i for the first 0 and
then position j for the second 0 gives
the same sequence as choosing position
j for the first 0 and position i for the
second.
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How many hands have at least 3
aces?

How many hands have at least 3 aces?

How many hands have exactly 3 aces?

How many hands have exactly 4 aces?

4512 + 48 = 4560

4704   4560

At least one of the

two counting

arguments is not

correct.

Four different sequences of
choices produce the same hand

A  A  A  A  K

A  A  A  A  K

A  A  A  A  K

A  A  A  A  K
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The aces came from the first choice
and the non-aces came from the second
choice.

1) Choose 3 of 4 aces
2) Choose 2 non-ace cards

A  Q  A  A  K

The aces came from the first choice
and the non-ace came from the second
choice.

1) Choose 4 of 4 aces
2) Choose 1 non-ace

A  A  A  A  K

Study Bee

• Correspondence Principle
If two finite sets can be
placed into 1-1 onto
correspondence, then they
have the same size

• Choice Tree
• Product Rule

two conditions

• Counting by complementing
it’s sometimes easier to count
the “opposite” of something

• Binomial coefficient
Number of r sets of an n set


