Homework Gots to be Typeset

You may use any typesetting program you wish, but we strongly encourage you to use LaTeX

We Are Here to help!

There are many office hours

throughout the week
If you have problems with the homework,
don't hesitate to ask for help

Dominoes

Domino Principle: Line up any number of dominos in a row; knock the first one over and they will all fall

Dominoes Numbered 1 to n

 $\boldsymbol{F}_{\boldsymbol{k}}\!\equiv$ "The \boldsymbol{k}^{th} domino falls"

If we set them up in a row then each one is set up to knock over the next:

For all
$$1 \le k \le n$$
:
 $F_k \Rightarrow F_{k+1}$

 $\begin{aligned} \textbf{F}_1 &\Rightarrow \textbf{F}_2 \Rightarrow \textbf{F}_3 \Rightarrow ... \\ \textbf{F}_1 &\Rightarrow \textbf{All Dominoes Fall} \end{aligned}$

Standard Notation

"for all" is written "∀"

Example:

For all k>0, $P(k) = \forall k>0$, P(k)

Dominoes Numbered 1 to n

 $\boldsymbol{F}_{\boldsymbol{k}}\!\equiv$ "The \boldsymbol{k}^{th} domino falls"

$$\forall$$
k, $0 \le$ k < n-1:

$$F_k \Rightarrow F_{k+1}$$

 $\textbf{F}_0 \Rightarrow \textbf{F}_1 \Rightarrow \textbf{F}_2 \Rightarrow ...$

 $F_0 \Rightarrow All Dominoes Fall$

The Natural Numbers

 $\mathbb{N} = \{0, 1, 2, 3, \dots\}$

One domino for each natural number:

Plato: The Domino Principle works for an infinite row of dominoes

Aristotle: Never seen an infinite number of anything, much less dominoes.

Plato's Dominoes One for each natural number

Theorem: An infinite row of dominoes. one domino for each natural number. Knock over the first domino and they all will fall

Proof:

Suppose they don't all fall. Let k > 0 be the lowest numbered domino that remains standing. Domino $k-1 \ge 0$ did fall, but k-1 will knock over domino k. Thus, domino k must fall and remain standing. Contradiction.

Mathematical Induction

statements proved instead of dominoes fallen

Infinite sequence of dominoes

Infinite sequence of statements: S₀, S₁, ...

 $F_k \equiv$ "domino k fell"

 $\mathbf{F_k} \equiv \mathbf{``S_k} \text{ proved''}$

Establish: 1. F₀

2. For all k, $F_k \Rightarrow F_{k+1}$

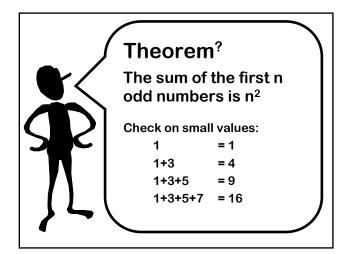
Conclude that F_k is true for all k

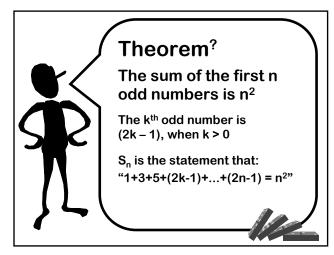
Inductive Proofs

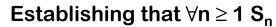
To Prove $\forall k \in \mathbb{N}, S_k$

Establish "Base Case": So Establish that $\forall k, S_k \Rightarrow S_{k+1}$

 $\forall k,\, S_k \Rightarrow S_{k+1} \quad \begin{cases} \text{ Assume hypothetically that } \\ S_k \text{ for any particular } k; \\ \\ \text{ Conclude that } S_{k+1} \end{cases}$







$$S_n = "1 + 3 + 5 + (2k-1) + ... + (2n-1) = n^2"$$

Base Case: S₁

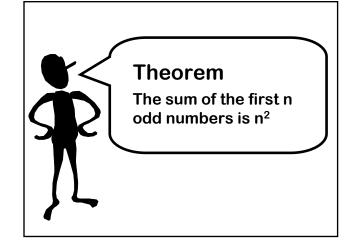
Domino Property:

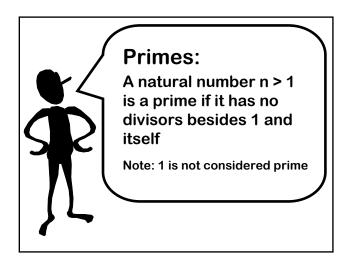
Assume "Induction Hypothesis": S_k (for any particular $k \ge 1$)

$$1+3+5+...+(2k-1)$$
 = k^2

$$1+3+5+...+(2k-1)+(2k+1) = k^2+(2k+1)$$

Sum of first k+1 odd numbers = $(k+1)^2$





Theorem?

Every natural number > 1 can be factored into primes

 $S_n \equiv$ "n can be factored into primes"

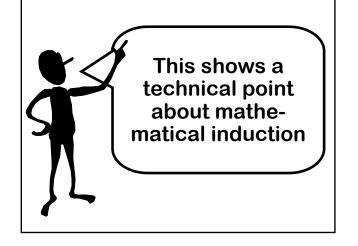
Base case:

2 is prime \Rightarrow S₂ is true

How do we use the fact:

 $\mathbf{S}_{\mathbf{k-1}} \equiv \text{``k-1}$ can be factored into primes'' to prove that:

 $S_k \equiv$ "k can be factored into primes"



Theorem?

Every natural number > 1 can be factored into primes

A different approach:

Assume 2,3,...,k-1 all can be factored into primes

Then show that k can be factored into primes

All Previous Induction

To Prove ∀k, S_k

Establish Base Case: S₀

Establish Domino Effect:

Assume $\forall j < k, S_j$ use that to derive S_k

"All Previous" Induction

Repackaged As Standard Induction

Establish Base

Case: S₀

Establish
Domino Effect:

Let k be any number Assume ∀j<k, S_i

Prove S_k

Define $T_i = \forall j \leq i, S_i$

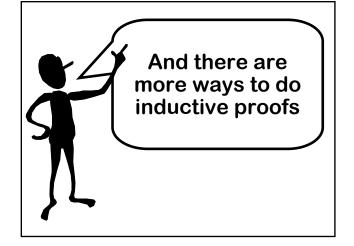
Establish Base

Case T₀

Establish that $\forall \mathbf{k}, \mathsf{T}_{\mathbf{k}} \Rightarrow \mathsf{T}_{\mathbf{k+1}}$

Let k be any number Assume T_{k-1}

Prove T_k



Method of Infinite Descent

Rene Descartes

Show that for any counterexample you find a smaller one

If a counter-example exists there would be an infinite sequence of smaller and smaller counter examples

Theorem:

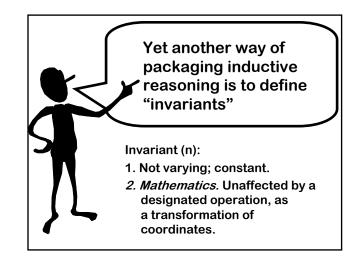
Every natural number > 1 can be factored into primes

Let n be a counter-example

Hence n is not prime, so n = ab

If both a and b had prime factorizations, then n would too

Thus a or b is a smaller counter-example



Invariant (n):

3. Programming. A rule, such as the ordering of an ordered list, that applies throughout the life of a data structure or procedure. Each change to the data structure maintains the correctness of the invariant

Invariant Induction

Suppose we have a time varying world state: W_0 , W_1 , W_2 , ...

Each state change is assumed to come from a list of permissible operations. We seek to prove that statement S is true of all future worlds

Argue that S is true of the initial world

Show that if S is true of some world – then S remains true after one permissible operation is performed

Odd/Even Handshaking Theorem

At any party at any point in time define a person's parity as ODD/EVEN according to the number of hands they have shaken

Statement: The number of people of odd parity must be even

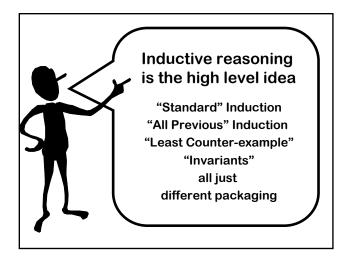
Statement: The number of people of odd parity must be even

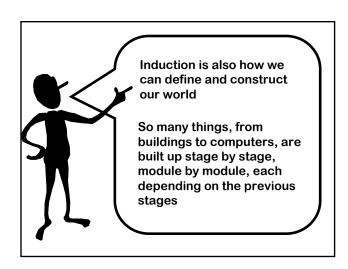
Initial case: Zero hands have been shaken at the start of a party, so zero people have odd parity

Invariant Argument:

If 2 people of the same parity shake, they both change and hence the odd parity count changes by 2 – and remains even

If 2 people of different parities shake, then they both swap parities and the odd parity count is unchanged





Inductive Definition

Example

Initial Condition, or Base Case:

F(0) = 1

Inductive definition of the powers of 2!

Inductive Rule:

....

For n > 0, F(n) = F(n-1) + F(n-1)

2

n 0 1

3 4 5 6 7

F(n)

4 8 16 32 64 128

Leonardo Fibonacci

In 1202, Fibonacci proposed a problem about the growth of rabbit populations

Rabbit Reproduction

A rabbit lives forever

The population starts as single newborn pair

Every month, each productive pair begets a new pair which will become productive after 2 months old

F_n= # of rabbit pairs at the beginning of the nth month

month 1 2 3 4 5 6 7 rabbits 1 1 2 3 5 8 13

Fibonacci Numbers

month 1 2 3 4 5 6 7 rabbits 1 1 2 3 5 8 13

Stage 0, Initial Condition, or Base Case: Fib(1) = 1; Fib (2) = 1

Inductive Rule:

For n>3, Fib(n) = Fib(n-1) + Fib(n-2)

Example

$$T(1) = 1$$

$$T(n) = 4T(n/2) + n$$

Notice that T(n) is inductively defined only for positive powers of 2, and undefined on other values

$$T(1) = 1$$
 $T(2) = 6$ $T(4) = 28$ $T(8) = 120$

Guess a closed-form formula for T(n)

Guess: $G(n) = 2n^2 - n$

Inductive Proof of Equivalence

Base Case: G(1) = 1 and T(1) = 1

Induction Hypothesis:

$$T(x) = G(x)$$
 for $x < n$

Hence:
$$T(n/2) = G(n/2) = 2(n/2)^2 - n/2$$

$$T(n) = 4 T(n/2) + n$$

$$= 4 G(n/2) + n$$

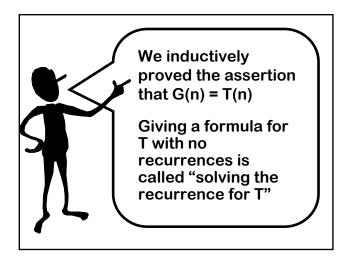
$$= 4 [2(n/2)^2 - n/2] + n$$

$$G(n) = 2n^2 - n$$

$$= 2n^2 - 2n + n$$

$$T(1) = 1$$

$$T(n) = 4T(n/2) + n$$



Technique 2

Guess Form, Calculate Coefficients

$$T(1) = 1$$
, $T(n) = 4 T(n/2) + n$

Guess:
$$T(n) = an^2 + bn + c$$

for some a,b,c

Calculate: T(1) = 1, so a + b + c = 1

$$T(n) = 4 T(n/2) + n$$

 $an^2 + bn + c = 4 [a(n/2)^2 + b(n/2) + c] + n$

$$= an^2 + 2bn + 4c + n$$

(b+1)n + 3c = 0

Therefore: b = -1 c = 0 a = 2

The Lindenmayer Game

Alphabet: {a,b} Start word: a Productions Rules:

 $\begin{aligned} & \text{Sub(a) = ab} & \text{Sub(b) = a} \\ & \text{NEXT}(w_1 \ w_2 \ ... \ w_n) = \\ & \text{Sub(w_1) Sub(w_2)} \ ... \ \text{Sub(w_n)} \end{aligned}$

Time 1: a

Time 2: ab
Time 3: aba
Time 4: abaab
How long are the strings at time n?
FIBONACCI(n)

Time 5: abaababa

The Koch Game

Alphabet: { F, +, - }
Start word: F

Productions Rules: Sub(F) = F+F--F+F

Sub(+) = + Sub(-) = -

 $NEXT(w_1 w_2 \dots w_n) =$

 $Sub(w_1) Sub(w_2) ... Sub(w_n)$

Time 0: F

Time 1: F+F--F+F

Time 2: F+F--F+F+F+F--F+F--F+F

The Koch Game

Visual representation:

F draw forward one unit

+ turn 60 degree left

- turn 60 degrees right

The Koch Game

Visual representation:

F draw forward one unit

+ turn 60 degree left

- turn 60 degrees right

