Great Theoretical Ideas In Computer Science
Steven Rudich CS 15-251 Spring 2005
Lecture 26 April 19, 2005 Carnegie Mellon University

Turing's Legacy:
The Limits Of Computation.
\"

. J

The HELLO assignment

Write a JAVA program to output the
word "HELLO" on the screen and halt.

Space and time are not an issue. The
program is for an ideal computer.

PASS for any working HELLO program,
no partial credit.

Grading Script

The grading script 6 must be able to
take any Java program P and grade it.

G(P)= |

Pass, if P prints only the word
"HELLO" and halts.

!

Fail, otherwise.

How exactly might such a script work?

What kind of program
could a student who
hated his/her TA hand

In?

Nasty Program

n:=0;
While

(nis not a counter-example
to the Riemann Hypothesis)

n++

PRINT "HELLO"

The nas’rppro?mm is a PASS if and only if the
YpO

Riemann hesis is true.

Infinite RAM Model

Platonic Version: One memory location
for each natural number 0,1, 2, ...

Aristotelian Version: Whenever you run

out of memory, the computer contacts
the factory. A maintenance person is
flown by helicopter and attaches 100
Gig of RAM and all programs resume
their computations, as if they had
never been interrupted.

Computable Function

Fix any finite set of symbols, X. Fix any
precise programming language, i.e., Java. A
program is any finite string of characters
that is syntactically valid.

A function f : £ -> 2* is computable if there
is a program P that when executed on an ideal

com;y’rer, computes f. That is, for all strings
xc 2" P(x) = f(x).

Countably many computable functions.

Fix any finite set of symbols, X. Fix any
precise programming language, i.e., Java. A
program is any finite string of characters
that is syntactically valid.

A function f : " -> 2* is computable if there
is a program P that when executed on an ideal

com§u’rer, computes f. That is, for all strings
xc 2" P(x) = f(x).

Uncountably many functions.

The functions f: 3" - > {0,1} are in 1-1
onto correspondence with the subsets
of X" (the powerset of X).

For any subset S of " we map to the
function f where:

f(x)=1 xinS
f(x)=0 xnotin$S

Uncountably many functions.

The functions f: 3" - > {0,1} are in 1-1
onto correspondence with the subsets
of X" (the powerset of Z°).

Then the set of all f: =* - > {0, 1} has the
same size as the powerset of X", Since
2" is countable its powerset is
uncountably big.

Notation And Conventions

* Fix a single programming language
 When we write program P we are
talking about the text of the source

code for P

* P(X) means the output that arises from
running program P on input X,
assuming that P eventually halts

 P(x) = O means P did not halt on x

P(P)

It follows from our conventions that
P(P) means the output obtained when
we run P on the text of its own source
code.

P(P) ... So that's what I look like

B

The Famous Halting Set: K

K is the set of all programs P
such that P(P) halts.

K ={ Java P | P(P) halts}

The Halting Problem

Is there a program HALT such that:

ALT(P)= vyes, if P(P) halts
ALT(P)= no, if P(P) does not halt

The Halting Problem
K={P | P(P) halts }

Is there a program HALT such that:

ALT(P)= yes, if POK
ALT(P)= no, if POK

HALTS decides whether or not any
given program is in K.

THEOREM: There is no program to
solve the halting problem
(Alan Turing 1937)

Suppose a program HALT, solving the
halting problem, existed:

ALT(P)= vyes, if P(P) halts
ALT(P)= no, if P(P) does not halt

We will call HALT as a subroutine in a
new program called CONFUSE.

CONFUSE(P):

If HALT(P) then loop_for_ever

Else return (i.e., halt)

<text of subroutine HALT goes here>

Does CONFUSE(CONFUSE) halt?

YES implies HALT(CONFUSE) = yes
thus, CONFUSE(CONFUSE) will not halt

NO implies HALT(CONFUSE) = no
thus, CONFUSE(CONFUSE) halts

CONFUSE(P):

If HALT(P) then loop_for_ever

Else return (i.e., halt)

<text of subroutine HALT goes here>

Does CONFUSE(CONFUSE) halt?

YES implies HALT(CONFUSE) yes

’rhus CONFUSE(C ill not halt

— CONTRADICTION —
NO implies HALT(CONFUSE) = no

thus, CONFUSE(CONFUSE) halts

Turing's argument is
essentially the
reincarnation of the
DIAGONALIZATION

argument from the

theory of infinities.

YES, if P(P;) halts
NO, otherwise

d. = HALT(P)

CONFUSE(P.) halts iff d. = no
The CONFUSE row contains the
negation of the diagonal.

Alan Turing (1912-1954)

Computability Theory:
Vocabulary Lesson

We call a set SOX" decidable or
recursive if there is a program P such
that:

P(x)=yes, if xS
P(x)=no, if x0OS

We already know: K is undecidable

Computability Theory:
Vocabulary Lesson

We call a set SOX" enumerable or
recursively enumerable (r.e) if there is
a program P such that:

P prints an (infinite) list of strings.
Each element in S appears after a
finite amount of time. Any element on
the list should be in S.

Enumerating K

For n = 0 to forever do

{Loop through w = all strings of length < n do:
{If w(w) halts in n steps then Output w}

}

Kis NOT decidable, but it
IS enumerable!

Let K’ ={java P | P(P)

does not halt}

Is K’ enumerable?

Now that we have
established that the Halting
Set Is undecidable, we can

use it for a jumping off

points for more “natural”
undecidabillity results.

Oracle For Set S

YES/NO Oracle
for S

Example Oracle
S = Odd Naturals

Oracle
for S

Ko= the set of programs that take no input and halt

oY

Oracle
for K,

Ko= the set of programs that take no input and halt

P = [input |; Q]
Does P(P) halt?

BUILD:
Oracle
for K

Does [I:=P;Q] halt?
_——m

—

GIVEN:
Oracle
for K,

Thus, If K, were decidable
then K would be as well.
We already know K Is not
decidable, hence K; Is not

decidable.

HELLO = the set of program that print hello and halt

Does P halt? Let P’ be P with all print
(statements removed.

[P’; print HELLO]
IS a hello program?
——

BUILD: -~
Oracle

for K,

HELLO iIs not decidable.

EQUAL = All <P,Q> such that P and Q have identical
output behavior on all inputs

Does P equal
HELLO ? Let HI = [print HELLO]

(:

Are P and HI equal?
— =

BUILD: D S GIVEN:
HELLO EQUAL

Halting with input, Halting
without input,

Hello, and
EQUAL are not decidable.

PHILOSOPHICAL
INTERLUDE

CHURCH-TURING THESIS

Any well-defined procedure
that can be grasped and
performed by the human mind

and pencil/paper, can be
performed on a conventional
digital computer with no bound

oh memory.

The Church-Turing Thesis is NOT a
theorem. It is a statement of belief
concerning the universe we live in.

Your opinion will be influenced by your
religious, scientific, and philosophical
beliefs.

Empirical Intuition

No one has ever given a counter-
example to the Church-Turing thesis.
I.e., no one has given a concrete
example of something humans compute
in a consistent and well defined way,
but that can't be programmed on a
computer. The thesis is true.

Mechanical Intuition

The brain is a machine. The components
of the machine obey fixed physical
laws. In principle, an entire brain can be

simulated step by step on a digital
computer. Thus, any thoughts of such a
brain can be computed by a simulating
computer. The thesis is true.

Spiritual Intuition

The mind consists of part matter and
part soul. Soul, by its very nature,
defies reduction to physical law. Thus,
the action and thoughts of the brain
are not simulable or reducible to simple
components and rules. The thesis is
false.

Quantum Intuition

The brain is a machine, but not a
classical one. It is inherently quantum
mechanical in nature and does not

reduce to simple particles in motion.
Thus, there are inherent barriers to
being simulated on a digital computer.
The thesis is false. However, the thesis
is true if we allow quantum computers.

Self-Reference Puzzle

Write a program that prints itself out
as output. No calls to the operating
system, or to memory external to the

program.

Auto Cannibal Maker

Write a program AutoCannibalMaker
that takes the text of a program EAT
as input and outputs a program called

SELFg,1. When SELFg,+ is executed it
should output EAT(SELFg,7)

Auto Cannibal Maker
Suppose Halt with no input was
programmable in JAVA.

Werite a program AutoCannibalMaker that
takes the text of a program EAT as input and
outputs a program called SELFg,1. When
SELFg, is executed it should output
EAT(SELFe)

Let EAT(P) = halt, if P does not halt
loop forever, otherwise.

What does SELFg,t do?

Contradictionl Hence EAT does not have
a corresponding JAVA program.

4X2Y + XY2=0

Do this polynomial have an integer
root? I.e., does it have a zero at a point
where all variables are integers?

Diophantus: Given a multi-variate
polynomial over the integers, does it
have an integer root?

D = {multi-variant integer polynomials P
| P has a root where all variables are

integers}

Famous Theorem: D is Undecidable!

[This is the solution to Hilbert's 10
problem]

Polynomials can encode programs.

There is a computable function
F: Java programs that take no input ->
Polynomials over the integers

Such that

Program P halts €<-> F(P) has an
integer root

D = the set of all integers polynomials with integer
roots

Does program P
halt?

L

A Million Dollar Diophantine Problem.

Does F(Nasty Program) have a root?

