

Random Walks on Graphs

Random Walks on Graphs

At any node, go to one of the neighbors of the node with equal probability.

Random Walks on Graphs

At any node, go to one of the neighbors of the node with equal probability.

Random Walks on Graphs

At any node, go to one of the neighbors of the node with equal probability.

Random walk on a line

You go into a casino with \$k, and at each time step, you bet \$1 on a fair game.
You leave when you are broke or have $\$ n$.

$X_{t}=\mathrm{k}+\delta_{1}+\delta_{2}+\ldots+\delta_{\mathrm{t}}$,
(δ_{i} is a RV for the change in your money at time i.)
$E\left[\delta_{i}\right]=0$, since $E\left[\delta_{i} \mid A\right]=0$ for all situations A at time i. So, $E\left[X_{t}\right]=k$.

Random walk on a line

You go into a casino with $\$ k$, and at each time step, you bet \$1 on a fair game.
You leave when you are broke or have $\$ n$.

Question 2:
what is the probability that you leave with \$n?

Random walk on a line

Question 2:
what is the probability that you leave with $\$ n$?

```
E[\mp@subsup{X}{t}{}]=k.
```

$E\left[X_{t}\right]=E\left[X_{t} \mid X_{t}=0\right] \times \operatorname{Pr}\left(X_{t}=0\right) \quad 0$
$+E\left[X_{t} \mid X_{t}=n\right] \times \operatorname{Pr}\left(X_{t}=n\right) \quad+n \times \operatorname{Pr}\left(X_{t}=n\right)$
$+E\left[X_{+} \mid\right.$neither $] \times \operatorname{Pr}($ neither $) \quad+$ (something ${ }_{+}$
$\times \operatorname{Pr}($ neither $))$

As $\dagger \rightarrow \infty, \operatorname{Pr}($ neither $) \rightarrow 0$, also something ${ }_{\dagger}<n$
Hence $\operatorname{Pr}\left(X_{t}=n\right) \rightarrow k / n$.

Another way of looking at it

You go into a casino with $\$ k$, and at each time step, you bet \$1 on a fair game.

You leave when you are broke or have $\$ n$.

Question 2:
what is the probability that you leave with $\$ n$?
$=$ the probability that I hit green before I hit red.

Random walks and electrical networks

What is chance I reach green before red?

Same as voltage if edges are resistors and we put 1 -volt battery between green and red.

Electrical networks save the day...

You go into a casino with $\$ k$, and at each time step, you bet \$1 on a fair game.
You leave when you are broke or have $\$ n$.

Question 2:
what is the probability that you leave with $\$ n$?
voltage $(k)=k / n$
$=\operatorname{Pr}[$ hitting n before 0 starting at $k]$!!!

Random walks and electrical networks

What is chance I reach green before red?

Of course, it holds for general graphs as well...

An averaging argument

Suppose I start at u.
$E[$ time to hit all vertices \mid start at $u] \leq C(G)$

Hence,
$\operatorname{Pr}[$ time to hit all vertices $>2 C(G) \mid$ start at $u] \leq \frac{1}{2}$.
Why?
Else this average would be higher.
(called Markov's inequality.)

so let's walk some more!

$\operatorname{Pr}[$ time to hit all vertices $>2 C(G) \mid$ start at $u] \leq \frac{1}{2}$.
Suppose at time $2 C(G)$, am at some node v, with more nodes still to visit.
Pr [haven't hit all vertices in $2 C(G)$ more time
| start at v] $\leq \frac{1}{2}$.
Chance that you failed both times $\leq \frac{1}{4}$!

An averaging argument

Suppose I start at u.
E [time to hit all vertices \mid start at u] $C(G)$

Hence, by Markov's Inequality
$\operatorname{Pr}[$ time to hit all vertices $>2 C(G) \mid$ start at $u] \leq \frac{1}{2}$.

The power of independence

It is like flipping a coin with tails probability $q \leq \frac{1}{2}$.
The probability that you get k tails is $q^{k} \leq\left(\frac{1}{2}\right)^{k}$.
(because the trials are independent!)

Hence,
$\operatorname{Pr}[$ havent hit everyone in time $\mathrm{k} \times 2 C(G)] \leq\left(\frac{1}{2}\right)^{\mathrm{k}}$

Exponential in k!

Guidebook

Imagine a sequence of 1 's, 2 's and 3 's 12323113212131...

Use this to tell you which edge to take out of a vertex.

Guidebook

Imagine a sequence of 1 's, 2's and 3's
12323113212131...

Use this to tell you which edge to take out of a vertex.

Universal Guidebooks

Theorem:
There exists a sequence S such that, for all degree- 3 graphs G (with n vertices), and all start vertices,
following this sequence will visit all nodes.
The length of this sequence S is $O\left(n^{3} \log n\right)$.
This is called a "universal traversal sequence".

degree $=2 n=3$ graphs

Want a sequence such that

- for all degree-2 graphs G with 3 nodes
- for all edge labelings
- for all start nodes
traverses graph G

degree=2 $n=3$ graphs

Want a sequence such that

- for all degree-2 graphs G with 3 nodes
- for all edge labelings
- for all start nodes
traverses graph G
degree=2 $n=3$ graphs

Want a sequence such that

- for all degree-2 graphs G with 3 nodes
- for all edge labelings
- for all start nodes
traverses graph G

Proof
 How many degree-3 n-node graph are there?

For each vertex, specifying neighbor 1, 2, 3 fixes the graph (and the labeling).

This is a 1-1 map from $\{$ deg-3 n-node graphs $\} \rightarrow\{1 \ldots(n-1)\}^{3 n}$

Hence, at most ($n-1)^{3 n}$ such graphs.

Proof
At most $(n-1)^{3 n}$ degree-3 n-node graphs.
Pick one such graph G and start node u.
Random string of length $4 \mathrm{~km}(n-1)$ fails to cover
it with probability $\frac{1}{2} k$.
If $k=(3 n+1)$ log n, probability of failure < $n-(3 n+1)$
I.e., less than $n-(3 n+1)$ fraction of random strings
of length $4 \mathrm{~km}(n-1)$ fail to cover G when
starting from u.

Proof (continued)

Each bite takes out at most $1 / n^{(3 n+1)}$ of the strings.
But we do this only $n(n-1)^{3 n}<n^{(3 n+1)}$ times.
(Once for each graph and each start node)
\Rightarrow Must still have strings left over!
(since fraction eaten away $=n(n-1)^{3 n} \times n^{-(3 n+1)}<1$)

These are good for every graph and every start node.

But here's a randomized procedure

Fraction of strings thrown away

$$
\begin{aligned}
& =n(n-1)^{\wedge}\{3 n\} / n^{\wedge}\{3 n+1\} \\
& =(1-1 / n)^{\wedge} n \rightarrow 1 / e=.3678
\end{aligned}
$$

Hence, if we pick a string at random, $\operatorname{Pr}[$ it is a UTS $]>\frac{1}{2}$

But we can't quickly check that it is...

Univeral Traversal Sequences

Final Calculation:
This good string has length

$4 \mathrm{~km}(\mathrm{n}-1)$

$=4 \times(3 n+1) \log n \times 3 n / 2 \times(n-1)$.
$=O\left(n^{3} \log n\right)$

Given n, don't know efficient algorithms to find a UTS of length n^{10} for n-node degree- 3 graphs.

Aside
Did not really need all nodes to have same degree.
(just to keep matters simple)
Else we need to specify what to do, e.g.,
if the node has degree 5 and we see a 7.

Electrical Networks again

"hitting time" $H_{u v}=E[$ time to reach $v \mid$ start at u]
Theorem: If each edge is a unit resistor
$H_{u v}+H_{v u}=2 m \times$ Resistance $_{u v}$

Electrical Networks again

"hitting time" $H_{u v}=E[$ time to reach $v \mid$ start at u]
Theorem: If each edge is a unit resistor
$H_{u v}+H_{v u}=2 m \times$ Resistance $_{u v}$

$H_{0, n}+H_{n, 0}=2 n \times n$
But $H_{0, n}=H_{n, 0} \Rightarrow H_{0, n}=n^{2}$

Electrical Networks again

If u and v are neighbors \Rightarrow Resistance $_{u v} \leq 1$
Then $H_{u v}+H_{v u} \leq 2 m$
We will use this to prove the Cover Time theorem $C_{u} \leq 2 m(n-1)$ for all u

Electrical Networks again

Let $H_{u v}=E[$ time to reach $v \mid$ start at u]
Theorem: If each edge is a unit resistor $H_{u v}+H_{u u}=2 m \times$ Resistance $_{u v}$

If u and v are neighbors \Rightarrow Resistance $_{u v} \leq 1$
Then $H_{u v}+H_{v u} \leq 2 m$

Suppose G is the graph

Pick a spanning tree of G

Say 1 was the start vertex,
$C_{1} \leq \mathrm{H}_{12}+\mathrm{H}_{21}+\mathrm{H}_{13}+\mathrm{H}_{35}+\mathrm{H}_{56}+\mathrm{H}_{65}+\mathrm{H}_{53}+\mathrm{H}_{34}$ $\leq\left(\mathrm{H}_{12}+\mathrm{H}_{21}\right)+\mathrm{H}_{13}+\left(\mathrm{H}_{35}+\mathrm{H}_{53}\right)+\left(\mathrm{H}_{56}+\mathrm{H}_{65}\right)+\mathrm{H}_{34}$

Each $H_{u v}+H_{v u} \leq 2 m$, and there are ($n-1$) edges
$C_{u} \leq(n-1) \times 2 m$

Flip an unbiased coin and go left/right.
Let X_{t} be the position at time \dagger
$\operatorname{Pr}\left[X_{t}=i\right]$
$=\operatorname{Pr}[\#$ heads $-\#$ tails $=i]$
$=\operatorname{Pr}[$ \#heads - \#tails $=i]$
$=\operatorname{Pr}[$ \#heads $-(t-\#$ heads $)=i]=\binom{t}{(t-i) / 2} / 2^{\dagger}$.

Simple Claim

Recall: if we repeatedly flip coin with bias p $E[\#$ of flips till heads $]=1 / p$.

Claim: If $\operatorname{Pr}[$ not return to origin] $=p$, then
$E[$ number of times at origin $]=1 / p$.
Proof: $H=$ never return to origin. $T=$ we do.
Hence returning to origin is like getting a tails. $E[\#$ of returns $]=$
$E[\#$ tails before a head $]=1 / p-1$.
(But we started at the origin too!)

How about a 2-d grid?

Let us simplify our 2-d random walk: move in both the x-direction and y-direction...

How about a 2-d grid?

Let us simplify our 2-d random walk: move in both the x-direction and y-direction...

in the 2-d walk

Returning to the origin in the grid
\Leftrightarrow both "line" random walks return to their origins
$\operatorname{Pr}[$ visit origin at time $\dagger]=\Theta(1 / \delta \dagger) \times \Theta(1 / \delta \dagger)$ $=\Theta(1 / \dagger)$

E [\# of visits to origin by time n]

$$
=\Theta(1 / 1+1 / 2+1 / 3+\ldots+1 / n)=\Theta(\log n)
$$

