Great Theoretical Ideas In Computer Science

Steven Rudich, Anupam Gupta CS 15-251 Spring 2005
Lecture 24 April 7, 2005 Carnegie Mellon University

Random Walks

Random Walks on Graphs

Random Walks on Graphs

At any node, go to one of the neighbors of the node with equal probability.

Random Walks on Graphs

At any node, go to one of the neighbors of the node with equal probability.

Random Walks on Graphs

At any node, go to one of the neighbors of the node with equal probability.

Random Walks on Graphs

At any node, go to one of the neighbors of the node with equal probability.

Random Walks on Graphs

At any node, go to one of the neighbors of the node with equal probability.

Random walk on a line

You go into a casino with \$k, and at each time step, you bet \$1 on a fair game.

You leave when you are broke or have \$n.

Question 1:

what is your expected amount of money at time t?

Let X_{t} be a R.V. for the amount of money at time t.

Random walk on a line

You go into a casino with \$k, and at each time step, you bet \$1 on a fair game.

You leave when you are broke or have \$n.

 $X_{t} = k + \delta_{1} + \delta_{2} + ... + \delta_{t}$

 $(\delta_i$ is a RV for the $\underline{\text{change}}$ in your money at time i.)

 $E[\delta_i]$ = 0, since $E[\delta_i|A]$ = 0 for all situations A at time i. So, $E[X_+]$ = k.

Random walk on a line

You go into a casino with \$k, and at each time step, you bet \$1 on a fair game.

You leave when you are broke or have \$n.

Question 2:

what is the probability that you leave with \$n?

Random walk on a line

Question 2:

what is the probability that you leave with \$n?

 $E[X_{+}] = k$

$$\begin{split} E[X_{+}] &= E[X_{+} \mid X_{+} = 0] \times Pr(X_{+} = 0) & 0 \\ &+ E[X_{+} \mid X_{+} = n] \times Pr(X_{+} = n) & + n \times Pr(X_{+} = n) \\ &+ E[X_{+} \mid neither] \times Pr(neither) & + (something_{+} \\ &\times Pr(neither)) \end{split}$$

As $t \to \infty$, Pr(neither) $\to 0$, also something_t < n Hence Pr($X_t = n$) $\to k/n$.

Another way of looking at it

You go into a casino with \$k, and at each time step, you bet \$1 on a fair game.

You leave when you are broke or have \$n.

Question 2:

what is the probability that you leave with \$n?

= the probability that I hit green before I hit red.

Random walks and electrical networks

What is chance I reach green before red?

Same as voltage if edges are resistors and we put 1-volt battery between green and red.

Random walks and electrical networks

- $\cdot p_x = Pr(reach green first starting from x)$
- p_{green} = 1, p_{red} = 0
- $\boldsymbol{\cdot}$ and for the rest p_x = Average_{y2\;Nbr(x)}(p_y)

Same as equations for <u>voltage</u> if edges all have same resistance!

Electrical networks save the day...

You go into a casino with k, and at each time step, you bet 1 on a fair game.

You leave when you are broke or have \$n.

Question 2:

what is the probability that you leave with \$n?

voltage(k) = k/n = Pr[hitting n before 0 starting at k] !!!

Random walks and electrical networks

What is chance I reach green before red?

Of course, it holds for general graphs as well...

Lost in a city, you want to get back to your hotel. How should you do this?

Depth First Search: requires a good memory and a piece of chalk

Getting back home

Lost in a city, you want to get back to your hotel. How should you do this?

How about walking randomly? no memory, no chalk, just coins...

Cover times

Let us define a couple of useful things:

Cover time (from u) $C_u = E$ [time to visit all vertices | start at u]

Cover time of the graph: $C(G) = \max_{u} \{ C_{u} \}$

Cover Time Theorem

If the graph G has n nodes and m edges, then the cover time of G is

 $C(G) \leq 2m (n-1)$

Any graph on n vertices has $< n^2/2$ edges. Hence $C(G) < n^3$ for all graphs G.

We will eventually get home

Look at the first n steps.

There is a non-zero chance p₁ that we get home.

Suppose we fail.

Then, wherever we are, there a chance $p_2 > 0$ that we hit home in the next n steps from there.

Probability of failing to reach home by time kn = (1 - p_1)(1- p_2) ... (1 - p_k) \to 0 as k $\to \infty$

An averaging argument

Suppose I start at u.

E[time to hit all vertices | start at $u \le C(G)$

Hence,

Pr[time to hit all vertices > 2C(G) | start at u] $\leq \frac{1}{2}$.

Why?

Else this average would be higher. (called Markov's inequality.)

Markov's Inequality

Random variable X has expectation A = E[X].

 $A = E[X] = E[X \mid X > 2A] Pr[X > 2A] + E[X \mid X \le 2A] Pr[X \le 2A]$

≥ E[X | X > 2A] Pr[X > 2A]

Also, $E[X \mid X > 2A] \rightarrow 2A$

 $\Rightarrow A \ge 2A \times \Pr[X > 2A] \qquad \Rightarrow \frac{1}{2} \ge \Pr[X > 2A]$

Pr[X exceeds k × expectation] ≤ 1/k.

An averaging argument

Suppose I start at u.

E[time to hit all vertices | start at $u \le C(G)$

Hence, by Markov's Inequality

Pr[time to hit all vertices > 2C(G) | start at u] $\leq \frac{1}{2}$.

so let's walk some more!

Pr [time to hit all vertices > 2C(G) | start at u] $\leq \frac{1}{2}$.

Suppose at time 2C(G), am at some node v, with more nodes still to visit.

Pr [haven't hit all vertices in 2C(G) more time | start at v] $\leq \frac{1}{2}$.

Chance that you failed both times $\leq \frac{1}{4}$!

The power of independence

It is like flipping a coin with tails probability $q \le \frac{1}{2}$.

The probability that you get k tails is $q^k \le (\frac{1}{2})^k$. (because the trials are independent!)

Hence,

 $\Pr[\text{ havent hit everyone in time } k \times 2C(G)] \le (\frac{1}{2})^k$

Exponential in k!

"3-regular" cities

Think of graphs where every node has degree 3. (i.e., our cities only have 3-way crossings)

And edges at any node are numbered with 1,2,3.

Guidebook

Imagine a sequence of 1's, 2's and 3's 12323113212131...

Use this to tell you which edge to take out of a vertex

Guidebook

Imagine a sequence of 1's, 2's and 3's 12323113212131...

Use this to tell you which edge to take out of a vertex.

Guidebook

Imagine a sequence of 1's, 2's and 3's 12323113212131...

Use this to tell you which edge to take out of a vertex.

Guidebook

Imagine a sequence of 1's, 2's and 3's 12323113212131...

Use this to tell you which edge to take out of a vertex.

Universal Guidebooks

Theorem:

There exists a sequence S such that, for <u>all</u> degree-3 graphs G (with n vertices), and <u>all</u> start vertices,

following this sequence will visit all nodes.

The length of this sequence S is $O(n^3 \log n)$.

This is called a "universal traversal sequence".

degree=2 n=3 graphs

Want a sequence such that

- for all degree-2 graphs G with 3 nodes for all edge labelings
- for all start nodes

traverses graph G

degree=2 n=3 graphs

Want a sequence such that

- for all degree-2 graphs G with 3 nodes for all edge labelings
- for all start nodes
- traverses graph G

degree=2 n=3 graphs

Want a sequence such that

- for all degree-2 graphs ${\it G}$ with ${\it 3}$ nodes
- for all edge labelings
- for all start nodes

traverses graph G

degree=2 n=3 graphs

Want a sequence such that

- for all degree-2 graphs G with 3 nodes
- for all edge labelings
- for all start nodes traverses graph G

122

Universal Traversal sequences

Theorem:

There exists a sequence S such that for

all degree-3 graphs G (with n vertices)

all labelings of the edges

<u>all</u> start vertices

following this sequence S will visit all nodes in G.

The length of this sequence S is $O(n^3 \log n)$.

Proof

How many degree-3 n-node graph are there?

For each vertex, specifying neighbor 1, 2, 3 fixes the graph (and the labeling).

This is a 1-1 map from

 $\{\text{deg-3 n-node graphs}\} \rightarrow \{1...(\text{n-1})\}^{3\text{n}}$

Hence, at most $(n-1)^{3n}$ such graphs.

Proof

At most $(n-1)^{3n}$ degree-3 n-node graphs. Pick one such graph G and start node u.

Random string of length 4km(n-1) fails to cover it with probability $\frac{1}{2}$ k.

If $k = (3n+1) \log n$, probability of failure $< n^{-(3n+1)}$

I.e., less than $n^{-(3n+1)}$ fraction of random strings of length 4km(n-1) fail to cover G when starting from u.

Proof (continued)

Each bite takes out at most $1/n^{(3n+1)}$ of the strings.

But we do this only $n(n-1)^{3n} < n^{(3n+1)}$ times. (Once for each graph and each start node)

 \Rightarrow Must still have strings left over! (since fraction eaten away = n(n-1)^3n × n-(3n+1) < 1)

These are good for every graph and every start node.

Univeral Traversal Sequences

Final Calculation:

This good string has length

4km(n-1)

 $= 4 \times (3n+1) \log n \times 3n/2 \times (n-1).$

 $= O(n^3 \log n)$

Given n, don't know efficient algorithms to find a UTS of length n¹⁰ for n-node degree-3 graphs.

But here's a randomized procedure

Fraction of strings thrown away

$$= n(n-1)^{3n} / n^{3n+1}$$

=
$$(1 - 1/n)^n \rightarrow 1/e = .3678$$

Hence, if we pick a string at random, $Pr[it is a UTS] > \frac{1}{2}$

But we can't quickly check that it is...

Aside

Did not really need all nodes to have same degree.
(just to keep matters simple)

Else we need to specify what to do, e.g., if the node has degree 5 and we see a 7.

Electrical Networks again

"hitting time" H_{uv} = E[time to reach $v \mid start$ at $u \mid s$

Theorem: If each edge is a unit resistor $H_{uv} + H_{vu} = 2m \times Resistance_{uv}$

Electrical Networks again

"hitting time" H_{uv} = E[time to reach $v \mid start$ at $u \mid$

Theorem: If each edge is a unit resistor H_{uv} + H_{vu} = 2m × Resistance_{uv}

 $\begin{aligned} &H_{0,n}+H_{n,0}=2n\times n\\ \text{But } H_{0,n}=H_{n,0} \Rightarrow &H_{0,n}=n^2 \end{aligned}$

Electrical Networks again

Let H_{uv} = E[time to reach v | start at u] Theorem: If each edge is a unit resistor H_{uv} + H_{vu} = $2m \times Resistance_{uv}$

If u and v are neighbors \Rightarrow Resistance_uv ≤ 1 Then H_{uv} + $H_{vu} \leq 2m$

Electrical Networks again

If u and v are neighbors \Rightarrow Resistance_uv ≤ 1 Then H_{uv} + H_{vu} $\leq 2m$

We will use this to prove the Cover Time theorem $C_{\rm u} \le 2{\rm m(n-1)}$ for all u

Suppose G is the graph

Pick a spanning tree of G

Say 1 was the start vertex,

$$\begin{array}{ll} C_1 & \leq H_{12} + H_{21} + H_{13} + H_{35} + H_{56} + H_{65} + H_{53} + H_{34} \\ & \leq \left(H_{12} + H_{21}\right) + H_{13} + \left(H_{35} + H_{53}\right) + \left(H_{56} + H_{65}\right) + H_{34} \end{array}$$

Each H_{uv} + $H_{vu} \le 2m$, and there are (n-1) edges

 $C_{ii} \leq (n-1) \times 2m$

Cover Time Theorem

If the graph G has n nodes and m edges, then the cover time of G is

$$C(G) \leq 2m (n-1)$$

Random walks on infinite graphs

A drunk man will find his way home, but a drunk bird may get lost forever

- Shizuo Kakutani

Random Walk on a line

Flip an unbiased coin and go left/right. Let \mathbf{X}_{t} be the position at time t

$$Pr[X_t = i]$$

= Pr[#heads - (t - #heads) = i] =
$$\binom{t}{(t-i)/2}$$
 /2^t

Unbiased Random Walk

$$Pr[X_{2t} = 0] = {2t \choose t}/2^{2t}$$

Stirling's approximation: $n! = \Theta((n/e)^n \times \sqrt{n})$

Hence:
$$(2n)!/(n!)^2 =$$

$$= \Theta(2^{2n}/n!^2)$$

Unbiased Random Walk

Simple Claim

Recall: if we repeatedly flip coin with bias p E[# of flips till heads] = 1/p.

Claim: If Pr[not return to origin] = p, then E[number of times at origin] = 1/p.

Proof: H = never return to origin. T = we do.

Hence returning to origin is like getting a tails.

E[# of returns] =

E[# tails before a head] = 1/p - 1.

(But we started at the origin too!)

We will return...

Claim: If Pr[not return to origin] = p, then E[number of times at origin] = 1/p.

Theorem: Pr[we return to origin] = 1.

Proof: Suppose not.

Hence p = Pr[never return] > 0. ⇒ E [#times at origin] = 1/p = constant.

But we showed that E[Z_n] = $\Theta(\ln) \to \infty$

How about a 2-d grid?

Let us simplify our 2-d random walk: move in both the x-direction and y-direction...

How about a 2-d grid?

Let us simplify our 2-d random walk: move in both the x-direction and y-direction...

How about a 2-d grid?

Let us simplify our 2-d random walk: move in both the x-direction and y-direction...

How about a 2-d grid?

Let us simplify our 2-d random walk: move in both the x-direction and y-direction...

How about a 2-d grid?

Let us simplify our 2-d random walk: move in both the x-direction and y-direction...

in the 2-d walk

Returning to the origin in the grid

both "line" random walks return to their origins

Pr[visit origin at time t] = $\Theta(1/\sqrt{t}) \times \Theta(1/\sqrt{t})$ = $\Theta(1/t)$

E[# of visits to origin by time n] = $\Theta(1/1 + 1/2 + 1/3 + ... + 1/n) = \Theta(\log n)$

We will return (again!)...

Claim: If Pr[not return to origin] = p, then E[number of times at origin] = 1/p.

Theorem: Pr[we return to origin] = 1.

Proof: Suppose not.

Hence p = Pr[never return] > 0. \Rightarrow E [#times at origin] = 1/p = constant.

But we showed that E[Z_n] = $\Theta(\log n) \rightarrow \infty$

But in 3-d

Pr[visit origin at time t] = $\Theta(1/\sqrt{t})^3 = \Theta(1/t^{3/2})$

 $\lim_{n\to\infty} E[\# \text{ of visits by time n }] < K \text{ (constant)}$

Hence

Pr[never return to origin] > 1/K.