
Great Theoretical Ideas In Computer Science
Steven Rudich, Anupam Gupta CS 15-251 Spring 2005
Lecture 24 April 7, 2005 Carnegie Mellon University

Random Walks

Random Walks on Graphs

-

Random Walks on Graphs

-

At any node, go to one of the neighbors of the node
with equal probability.

Random Walks on Graphs

-

At any node, go to one of the neighbors of the node
with equal probability.

Random Walks on Graphs

-

At any node, go to one of the neighbors of the node
with equal probability.

Random Walks on Graphs

-

At any node, go to one of the neighbors of the node
with equal probability.

Random Walks on Graphs

-

At any node, go to one of the neighbors of the node
with equal probability.

Let’s start simple…

We’ll just walk in
a straight line.

Random walk on a lineRandom walk on a line

You go into a casino with $k, and at each time step,
you bet $1 on a fair game.
You leave when you are broke or have $n.

Question 1:
what is your expected amount of money at time t?

Let Xt be a R.V. for the amount of money at time t.

0 n
k

Random walk on a lineRandom walk on a line

You go into a casino with $k, and at each time step,
you bet $1 on a fair game.
You leave when you are broke or have $n.

0 n
Xt

Xt = k + δ1 + δ2 + ... + δt,

(δi is a RV for the change in your money at time i.)

E[δi] = 0, since E[δi|A] = 0 for all situations A at time i.
So, E[Xt] = k.

Random walk on a lineRandom walk on a line

You go into a casino with $k, and at each time step,
you bet $1 on a fair game.
You leave when you are broke or have $n.

Question 2:
what is the probability that you leave with $n ?

0 n
k

Random walk on a lineRandom walk on a line

Question 2:
what is the probability that you leave with $n ?

E[Xt] = k.
E[Xt] = E[Xt| Xt = 0] × Pr(Xt = 0)

+ E[Xt | Xt = n] × Pr(Xt = n)
+ E[Xt | neither] × Pr(neither)

As t →∞, Pr(neither) → 0, also somethingt < n
Hence Pr(Xt = n) → k/n.

0
+ n × Pr(Xt = n)
+ (somethingt

× Pr(neither))

Another way of looking at itAnother way of looking at it

You go into a casino with $k, and at each time step,
you bet $1 on a fair game.
You leave when you are broke or have $n.

Question 2:
what is the probability that you leave with $n ?

= the probability that I hit green before I hit red.

0 n
k

Random walks and electrical networks

What is chance I reach green before red?

-

Same as voltage if edges are resistors and we put
1-volt battery between green and red.

Random walks and electrical networks

-

• px = Pr(reach green first starting from x)

• pgreen= 1, pred = 0

• and for the rest px = Averagey2 Nbr(x)(py)

Same as equations for voltage if edges all
have same resistance!

Electrical networks save the day…Electrical networks save the day…

You go into a casino with $k, and at each time step,
you bet $1 on a fair game.
You leave when you are broke or have $n.

Question 2:
what is the probability that you leave with $n ?

voltage(k) = k/n
= Pr[hitting n before 0 starting at k] !!!

0 n
k 1 volt0 volts

Random walks and electrical networks

What is chance I reach green before red?

-

Of course, it holds for general graphs as well…

Let’s move on to
some other questions

on general graphs

Getting back home

-

Lost in a city, you want to get back to your hotel.
How should you do this?

Depth First Search:
requires a good memory and a piece of chalk

Getting back home

-

Lost in a city, you want to get back to your hotel.
How should you do this?

How about walking randomly?
no memory, no chalk, just coins…

Will this work?

When will I get home?

I have a curfew
of 10 PM!

Will this work?
Is Pr[reach home] = 1?

When will I get home?
What is

E[time to reach home]?

I have a curfew
of 10 PM!

Relax, Bonzo!

Yes,
Pr[will reach home] = 1

Furthermore:

If the graph has
n nodes and m edges, then

E[time to visit all nodes]
≤ 2m × (n-1)

E[time to reach home] is at most
this

Cover times

Let us define a couple of useful things:

Cover time (from u)
Cu = E [time to visit all vertices | start at u]

Cover time of the graph:
C(G) = maxu { Cu }

Cover Time Theorem

If the graph G has
n nodes and m edges, then

the cover time of G is

C(G) ≤ 2m (n – 1)

Any graph on n vertices has < n2/2 edges.
Hence C(G) < n3 for all graphs G.

First, let’s prove that

Pr[eventually get home] = 1

We will eventually get home

Look at the first n steps.
There is a non-zero chance p1 that we get home.

Suppose we fail.
Then, wherever we are, there a chance p2 > 0
that we hit home in the next n steps from there.

Probability of failing to reach home by time kn
= (1 – p1)(1- p2) … (1 – pk) → 0 as k → ∞

In fact

Pr[we don’t get home by 2k C(G)
steps] ≤ (½)k

Recall: C(G) = cover time of G ≤ 2m(n-1)

An averaging argument

Suppose I start at u.
E[time to hit all vertices | start at u] ≤ C(G)

Hence,
Pr[time to hit all vertices > 2C(G) | start at u] ≤ ½.

Why?
Else this average would be higher.
(called Markov’s inequality.)

Markov’s Inequality

Random variable X has expectation A = E[X].

A = E[X] = E[X | X > 2A] Pr[X > 2A]
+ E[X | X ≤ 2A] Pr[X ≤ 2A]

≥ E[X | X > 2A] Pr[X > 2A]

Also, E[X | X > 2A] > 2A

⇒ A ≥ 2A × Pr[X > 2A] ⇒ ½ ≥ Pr[X > 2A]

Pr[X exceeds k × expectation] ≤ 1/k.

An averaging argument

Suppose I start at u.
E[time to hit all vertices | start at u] ≤ C(G)

Hence, by Markov’s Inequality

Pr[time to hit all vertices > 2C(G) | start at u] ≤ ½.

so let’s walk some more!

Pr [time to hit all vertices > 2C(G) | start at u] ≤ ½.

Suppose at time 2C(G), am at some node v,
with more nodes still to visit.

Pr [haven’t hit all vertices in 2C(G) more time
| start at v] ≤ ½.

Chance that you failed both times ≤ ¼ !

The power of independence

It is like flipping a coin with tails probability q ≤ ½.

The probability that you get k tails is qk ≤ (½)k.
(because the trials are independent!)

Hence,
Pr[havent hit everyone in time k × 2C(G)] ≤ (½)k

Exponential in k!

Hence, if we know that

Expected Cover Time
C(G) < 2m(n-1)

then

Pr[home by time 4km(n-1)] ≥ 1 – (½)k

Let us see a cute
implication of the
fact that we see
all the vertices

quickly!

“3-regular” cities

Think of graphs where every node has degree 3.
(i.e., our cities only have 3-way crossings)

And edges at any node are numbered with 1,2,3.

1

1
3

2
2 31 2

3

1

2
3

Guidebook

Imagine a sequence of 1’s, 2’s and 3’s
12323113212131…

Use this to tell you which edge to take out of a
vertex.

1

1
3

2
2 31 2

3

1

2
3

Guidebook

Imagine a sequence of 1’s, 2’s and 3’s
12323113212131…

Use this to tell you which edge to take out of a
vertex.

1

1
3

2
2 31 2

3

1

2
3

Guidebook

Imagine a sequence of 1’s, 2’s and 3’s
12323113212131…

Use this to tell you which edge to take out of a
vertex.

1

1
3

2
2 31 2

3

1

2
3

Guidebook

Imagine a sequence of 1’s, 2’s and 3’s
12323113212131…

Use this to tell you which edge to take out of a
vertex.

1

1
3

2
2 31 2

3

1

2
3

Universal Guidebooks

Theorem:

There exists a sequence S such that,
for all degree-3 graphs G (with n vertices),
and all start vertices,

following this sequence will visit all nodes.

The length of this sequence S is O(n3 log n) .

This is called a “universal traversal sequence”.

degree=2 n=3 graphs

Want a sequence such that
- for all degree-2 graphs G with 3 nodes
- for all edge labelings
- for all start nodes
traverses graph G

degree=2 n=3 graphs

1

1 2

1

22

Want a sequence such that
- for all degree-2 graphs G with 3 nodes
- for all edge labelings
- for all start nodes
traverses graph G

degree=2 n=3 graphs

2

1 2

1

12

Want a sequence such that
- for all degree-2 graphs G with 3 nodes
- for all edge labelings
- for all start nodes
traverses graph G

degree=2 n=3 graphs

2

2 1

2

11

Want a sequence such that
- for all degree-2 graphs G with 3 nodes
- for all edge labelings
- for all start nodes
traverses graph G

122

Universal Traversal sequences

Theorem:

There exists a sequence S such that for
all degree-3 graphs G (with n vertices)
all labelings of the edges
all start vertices

following this sequence S will visit all nodes in G.

The length of this sequence S is O(n3 log n) .

Proof

How many degree-3 n-node graph are there?

For each vertex, specifying neighbor 1, 2, 3 fixes
the graph (and the labeling).

This is a 1-1 map from
{deg-3 n-node graphs} → {1…(n-1)}3n

Hence, at most (n-1)3n such graphs.

Proof

At most (n-1)3n degree-3 n-node graphs.
Pick one such graph G and start node u.

Random string of length 4km(n-1) fails to cover
it with probability ½k.

If k = (3n+1) log n, probability of failure < n-(3n+1)

I.e., less than n-(3n+1) fraction of random strings
of length 4km(n-1) fail to cover G when
starting from u.

Strings bad for G1 and start node u
St

ri
ng

s
ba

d
fo

r
G 1

an
d

st
ar

t
no

de
 v

≤ 1/n(3n+1) of
all strings

All length 4km(n-1) length random strings

Proof (continued)

Each bite takes out at most 1/n(3n+1) of the strings.

But we do this only n(n-1)3n < n(3n+1) times.
(Once for each graph and each start node)

⇒ Must still have strings left over!
(since fraction eaten away = n(n-1)3n × n-(3n+1) < 1)

These are good for every graph and every start node.

Univeral Traversal Sequences

Final Calculation:
This good string has length

4km(n-1)
= 4 × (3n+1) log n × 3n/2 × (n-1).
= O(n3 log n)

Given n, don’t know efficient algorithms to find a
UTS of length n10 for n-node degree-3 graphs.

But here’s a randomized procedure

Fraction of strings thrown away

= n(n-1)^{3n} / n^{3n+1}

= (1 – 1/n)^n → 1/e = .3678

Hence, if we pick a string at random,
Pr[it is a UTS] > ½

But we can’t quickly check that it is…

Aside

Did not really need all nodes to have same degree.
(just to keep matters simple)

Else we need to specify what to do, e.g.,
if the node has degree 5 and we see a 7.

Cover Time Theorem

If the graph G has
n nodes and m edges, then

the cover time of G is

C(G) ≤ 2m (n – 1)

Electrical Networks again

“hitting time” Huv = E[time to reach v | start at u]

Theorem: If each edge is a unit resistor
Huv + Hvu = 2m × Resistanceuv

-

u

v

Electrical Networks again

“hitting time” Huv = E[time to reach v | start at u]

Theorem: If each edge is a unit resistor
Huv + Hvu = 2m × Resistanceuv

0 n

H0,n + Hn,0 = 2n × n
But H0,n = Hn,0 ⇒ H0,n = n2

Electrical Networks again

Let Huv = E[time to reach v | start at u]
Theorem: If each edge is a unit resistor

Huv + Hvu = 2m × Resistanceuv

If u and v are neighbors ⇒ Resistanceuv ≤ 1
Then Huv + Hvu ≤ 2m

-

u

v

Electrical Networks again

If u and v are neighbors ⇒ Resistanceuv ≤ 1
Then Huv + Hvu ≤ 2m

We will use this to prove the Cover Time theorem
Cu ≤ 2m(n-1) for all u

-

u

v

Suppose G is the graph

6

5
3

4

2

1

Pick a spanning tree of G

Say 1 was the start vertex,
C1 ≤ H12+H21+H13+H35+H56+H65+H53+H34

≤ (H12+H21) + H13+ (H35+H53) + (H56+H65) + H34

Each Huv + Hvu ≤ 2m, and there are (n-1) edges

Cu ≤ (n-1) × 2m

-
6

5
3

4

2

1

Cover Time Theorem

If the graph G has
n nodes and m edges, then

the cover time of G is

C(G) ≤ 2m (n – 1)

Random walks
on

infinite graphs

A drunk man will find his
way home, but a drunk

bird may get lost forever

- Shizuo Kakutani

Random Walk on a line

i0

Flip an unbiased coin and go left/right.
Let Xt be the position at time t

Pr[Xt = i]
= Pr[#heads - #tails = i]
= Pr[#heads – (t - #heads) = i] = /2t⎛ t ⎞

⎝ (t-i)/2 ⎠

Unbiased Random Walk

Pr[X2t = 0] = /22t

Stirling’s approximation: n! = Θ((n/e)n × √n)

Hence: (2n)!/(n!)2 =

= Θ(22n/n½)

⎛ 2t ⎞
⎝ t ⎠

£ ((2n

0

e)2n p
2n)

£ ((n
e)n p

n)

Unbiased Random Walk

0

Pr[X2t = 0] = /22t ≤ Θ(1/√t)

Y2t = indicator for (X2t = 0) ⇒ E[Y2t] = Θ(1/√t)

Z2n = number of visits to origin in 2n steps.
⇒ E[Z2n] = E[∑t = 1…n Y2t]

= Θ(1/√1 + 1/√2 +…+ 1/√n) = Θ(√n)

Sterling’s
approx.⎛ 2t ⎞

⎝ t ⎠

In n steps, you expect to
return to the origin

Θ(√n) times!

Simple Claim

Recall: if we repeatedly flip coin with bias p
E[# of flips till heads] = 1/p.

Claim: If Pr[not return to origin] = p, then
E[number of times at origin] = 1/p.

Proof: H = never return to origin. T = we do.
Hence returning to origin is like getting a tails.
E[# of returns] =

E[# tails before a head] = 1/p – 1.
(But we started at the origin too!)

We will return…

Claim: If Pr[not return to origin] = p, then
E[number of times at origin] = 1/p.

Theorem: Pr[we return to origin] = 1.

Proof: Suppose not.
Hence p = Pr[never return] > 0.
⇒ E [#times at origin] = 1/p = constant.

But we showed that E[Zn] = Θ(√n) → ∞

How about a 2-d grid?

Let us simplify our 2-d random walk:
move in both the x-direction and y-direction…

How about a 2-d grid?

Let us simplify our 2-d random walk:
move in both the x-direction and y-direction…

How about a 2-d grid?

Let us simplify our 2-d random walk:
move in both the x-direction and y-direction…

How about a 2-d grid?

Let us simplify our 2-d random walk:
move in both the x-direction and y-direction…

How about a 2-d grid?

Let us simplify our 2-d random walk:
move in both the x-direction and y-direction…

in the 2-d walk

Returning to the origin in the grid
⇔ both “line” random walks return to their origins

Pr[visit origin at time t] = Θ(1/√t) × Θ(1/√t)
= Θ(1/t)

E[# of visits to origin by time n]
= Θ(1/1 + 1/2 + 1/3 + … + 1/n) = Θ(log n)

We will return (again!)…

Claim: If Pr[not return to origin] = p, then
E[number of times at origin] = 1/p.

Theorem: Pr[we return to origin] = 1.

Proof: Suppose not.
Hence p = Pr[never return] > 0.
⇒ E [#times at origin] = 1/p = constant.

But we showed that E[Zn] = Θ(log n) → ∞

But in 3-d

Pr[visit origin at time t] = Θ(1/√t)3 = Θ(1/t3/2)

limn →∞ E[# of visits by time n] < K (constant)

Hence
Pr[never return to origin] > 1/K.

	Random Walks
	Random Walks on Graphs
	Random Walks on Graphs
	Random Walks on Graphs
	Random Walks on Graphs
	Random Walks on Graphs
	Random Walks on Graphs
	Random walk on a line
	Random walk on a line
	Random walk on a line
	Random walk on a line
	Another way of looking at it
	Random walks and electrical networks
	Random walks and electrical networks
	Electrical networks save the day…
	Random walks and electrical networks
	Getting back home
	Getting back home
	Cover times
	We will eventually get home
	An averaging argument
	Markov’s Inequality
	An averaging argument
	so let’s walk some more!
	The power of independence
	“3-regular” cities
	Guidebook
	Guidebook
	Guidebook
	Guidebook
	Universal Guidebooks
	degree=2 n=3 graphs
	degree=2 n=3 graphs
	degree=2 n=3 graphs
	degree=2 n=3 graphs
	Universal Traversal sequences
	Proof
	Proof
	Proof (continued)
	Univeral Traversal Sequences
	But here’s a randomized procedure
	Aside
	Electrical Networks again
	Electrical Networks again
	Electrical Networks again
	Electrical Networks again
	Suppose G is the graph
	Pick a spanning tree of G
	
	Random Walk on a line
	Unbiased Random Walk
	Unbiased Random Walk
	Simple Claim
	We will return…
	How about a 2-d grid?
	How about a 2-d grid?
	How about a 2-d grid?
	How about a 2-d grid?
	How about a 2-d grid?
	in the 2-d walk
	We will return (again!)…
	But in 3-d

