g Great Theoretical Ideas In Computer Science

| Steven Rudich, Anupam Gupta [¢515-251 _ Spring 2005

[Lecture 22 [March 31, 2005 | carnegie Mellon University

Decision Trees and Information:
A Question of Bits

[)

A 7

Choice Tree

A choice tree is a rooted, directed tree
with an object called a "choice”
associated with each edge and

a label on each leaf.

Choice Tree Representation of S

We satisfy these two conditions:
Each leaf label is in S
Each element from S on exactly one leaf.

Question Tree Representation of S

T am thinking of an outfit.
Ask me questions until you know which one.

What color is the beanie?
What color is the tie?

When a question tree has
at most 2 choices at each node,
we will call it a decision tree,
or a decision strategy.

Note: Nodes with one choices
represent stupid questions, but
we do allow stupid questions.

20 Questions

S = set of all English nouns
Game:
I am thinking of an element of S.
You may ask up to 20 YES/NO questions.

What is a question strategy for this game?

20 Questions

Suppose S = {ag, ay, Gz, .., G}
Binary search on S.

First question will be:
"Is the word in {ag, a5, ay, ..., Ag1y2} ?"

20 Questions
Decision Tree Representation

A decision tree with depth at most 20, which
has the elements of S on the leaves.

Decision tree for Decision tree for
{a, ay, 0y, ..., A 1y/2} {Qgety2, -0 Gt @

Decision Tree Representation

Theorem:
The binary-search decision tree for S with k+1
elements { ag, a;, a,, .., a; } has depth

[log (k+1)]
= Llog kl+1

= |kl
™~

“the length of k
when written

in binary”

Another way to look at it

Suppose you are thinking of the noun a,in S
We ask about each bit of index m

Is the leftmost bit of m 0?
Is the next bit of m 0?

Theorem: The binary-search decision-tree for
S={ag, a0y, .., a} has depth

|k| =Llog k] + 1

A lower bound

Theorem: No decision tree for S (with k+1
elements) can have depth d<log k] + 1.

Proof:
A depth d binary tree can have at most 29 leaves.
But d < Llog k| + 1 = number of leaves 29 < (k+1)
Hence some element of S is not a leaf.

Tight bounds!

The optimal-depth decision tree
for any set S with (k+1) elements has depth

Llog k] + 1= |K|

Recall...

The minimum number of bits used to represent
unordered 5 card poker hands =

log, (552)1

= 22 bits

= The decision tree depth for 5 card poker hands.

Prefix-free Set

Let T be a subset of {0,1}".
Definition:
T is prefix-free if for any distinct xy € T,
if |x| < |yl, then x is not a prefix of y

Example:
{000, 001, 1, 01} is prefix-free

{0} [01}[20} 11,101} is not.

Prefix-free Code for S

Let S be any seft.

Definition: A prefix-free code for S is
a prefix-free set T and
a 1-1 “encoding” function f: S -> T.

The inverse function f! is called the "decoding
function".

Example: S = {apple, orange, mango}.
T={0, 110, 1111},
f(apple) = 0, f(orange) = 1111, f(mango) = 110.

What is so cool
about prefix-free
codes?

Sending sequences of
elements of S over a
communications
channel

Let T be prefix-free and f be an encoding
function. Wish to send <x;, X,, X3, ..>

Sender: sends f(x;) f(x,) f(x3)...

Receiver: breaks bit stream into elements
of T and decodes using f!

Sending info on a channel

Example: S = {apple, orange, mango}.
T = {0, 110, 1111},
f(apple) = 0, f(orange) = 1111, f(mango) = 110.

If we see
00011011111100...
we know it must be
00011011111100 ...
and hence
apple apple apple mango orange mango apple ...

Morse Code is not Prefix-freel

SOS encodes as ...---...

A.- F..-. K-.- P.--. u..- Z--..
B-... G--. L.-.. Q--.- V.-
C-.-. H... M-- R.-. W.--
D-.. I.. N-. S... X-..-
E. J.--- O--- T- Yo-.--

Morse Code is not Prefix-freel

SOS encodes as ...---...

Could decode as: ..|.-|--|..|. = IAMIE

A.- Fomo K-- P-. U..- z--..
B-. 6--. L. Qe V.-

C--. H.. M-- R .- W.--

D-.. I.. N-. 5. X-..-

E. Jo—- 0-- T- Y-

Unless you use pauses

SOS encodes as ... --- ...

A.- F..-. K-.- P.--. uU..- Z--..
B-... G--. L.-.. Q--.- V.-
C-.-. H... M-- R.-. W.--
D-.. I.. N-. S... X-..-
E. J.--- O--- T- Yo-.--

Prefix-free codes
are also called
“self-delimiting"
codes.

Representing prefix-free codes

A =100
B =010
¢=101
D =011
E=00
F=11

“CAFE" would encode as 1011001100
How do we decode 1011001100 (fast)?

If you see: 1000101000111011001100

can decode as:

If you see: 1000101000111011001100

can decode as: A

If you see: 1000101000111011001100

can decode as: AB

B D A
If you see: 1000101000111011001100

can decode as: ABA

B D A
If you see: 10001010001111011001100

can decode as: ABAD

B D A
If you see: 1000101000141011001100

can decode as: ABADC

B D A
If you see: 1000101000111011001100

can decode as: ABADCA

B D A 4
If you see: 1000101000111011001100

can decode as: ABADCAF

B D A 4
If you see: 10001010001110110011@

can decode as: ABADCAFE

Prefix-free codes
are yet another
representation of a
decision tree.

Theorem:
S has a decision free of depth d
if and only if

S has a prefix-free code with all
codewords bounded by length d

Theorem:
S has a decision free of depth d
if and only if

S has a prefix-free code with all
codewords bounded by length d

Extends to infinite sets

Let S is a subset of 2]

Theorem:

S has a decision tree where all length n elements
of S have depth < D(n)

if and only if

S has a prefix-free code where all length n strings
in S have encodings of length < D(n)

T am thinking of some
natural number k.

ask me YES/NO questions in

order to determine k.

Let d(k) be the number of questions that
you ask when I am thinking of k.

Let D(n) = max { d(k) over n-bit numbers k }.

T am thinking of some
natural number k -

ask me YES/NO questions in

order to determine k.

% Naive strategy: Is it 02 12 2?2 32 ..

d(k) = k+1

D(n) = 2™ since 2™! -1 uses only n bits.

Effort is exponential in length of k Il

T am thinking of some
natural number k -

ask me YES/NO questions in

order to determine k.

What is an efficient
question strategy?

T am thinking of some
natural number k...

Does k have length 12 NO
Does k have length 22 NO
Does k have length 32 NO

Does k have length n? YES
Do binary search on strings of length n.

d(k) = [k| + [kl
=2([logk]+1)

D(n) = 2n

Size First/ Binary Search

Does k have length 12 NO
Does k have length 22 NO
Does k have length 32 NO

Does k have length n? YES
Do binary search on strings of length n.

What prefix-free code
corresponds to the
Size First / Binary Search
decision strategy?

f(k) = (Ik| - 1) zeros, followed

by 1, and then by the binary
representation of k

[f(k)| = 2 [k]

What prefix-free code
corresponds to the
Size First / Binary Search
decision strategy?

Or,

length of k in unary = k| bits
k in binary = |k| bits

Another way to look at f

k = 27 = 11011, and hence |k| = 5

#(4) = Da0I[tion]

Another way to look at f

k = 27 = 11011, and hence |k| = 5

11011
(k) =
\ ~ 0101000111

g(k) = 0101000111

Another way to look at the function g:

g(final 0) -> 10
g(final 1) -> 11

g(all other O's) -> 00
g(all other 1's) -> 01

“Fat Binary" = Size First/Binary Search strategy

Is it possible to beat 2n questions
to find a number of length n?

Look at the prefix-free code...

Any obvious improvement
suggest itself here?

the fat-binary map f concatenates

length of k in@: [k| bits
k in binary = |k| bits

fathinary!

In fat-binary, D(n) < 2n
Now D(n)<n+2 ([logn | +1)

Can you do better?

better-than-Fat-Binary-code(k)
concatenates

length of k in fat binary = 2| |k|| bits
k in binary = |k| bits

Hey, wait!
Inabetter prefix-free code

RecursiveCode(k) concatenates
RecursiveCode(|k|) & k in binary

better-t-better-thanFB

[etrer—piretr=fat=Birery= code
better-t-FB I1kl1+ 2111kl

|K| in=fatbiane = ;

k in binary = |k| bits

_

Oh, I need to remember how many
levels of recursion r(k)

In the final code
F(k) = F(r(k)) . RecursiveCode(k)

r(k) = log* k

Hence, length of F(k)
= |kl + [kl + Tk + .+ 1
+ | log*k | + ...

b &

[a]

Good, Bonzo! I had thought you
had fallen asleep.

Your code is sometimes called
the Ladder codell

Maybe T can do better...

Can I get a prefix code
for k with length = log k ?

No!
Let me tell you why

length = log k
is not possible

Decision trees have a natural
probabilistic interpretation.

Let T be a decision tree for S.

Start at the root, flip a fair
coin at each decision, and stop
when you get to a leaf.

Each sequence w in S will be hit

with probability 1/21%! /

Random walk down the tree

B D A c

Each sequence w in S will
be hit with probability 1/2w!

Hence, Pr(F) = %, Pr(A) = 1/8, Pr(C) = 1/8, ...

Let T be a decision tree for S
(possibly countably infinite set)

The probability that some
element in S is hit by a random
walk down from the root is

s 17201 < 1

Kraft Inequality

Let S be any prefix-free code.

Kraft Inequality:
Ypes 1/2m <1

Fat Binary:
f(k) has 2|k| =2 log k bits

Vo 30O <1

8 T /K2

Let S be any prefix-free code.

Kraft Inequality:
Yhes /2 <1

Better-than-FatB Code:

f(k) has |k| + 2] |k|| bits

Vo 31091 <1

% Yyen 1/(k (log k)?)

Let S be any prefix-free code.

Kraft Inequality:
Yhes /2 <1

Ladder Code: k is represented by
[kl + [IKIT+ [IIKIT] + ... bits

Ton B0 <1

% ¥y 1/(k logk loglogk ...)

Let S be any prefix-free code.

Kraft Inequality:
Ypes 1/2m <1

Can a code that represents k by
|k| = logk bits exist?

No, since ¥, . 1/k diverges |l
So you can't get log n, Bonzo...

Back to compressing words

The optimal-depth decision tree
for any set S with (k+1) elements has depth
Llog kJ+1

U

The optimal prefix-free code
for A-Z + “space” has length
Llog 26/+1=5

10

English Letter Frequencies

But in English, different letters occur with

different freguencies.

A81%
B 14%
c23%
D47%
E12%

F23%
G21%
H66%
I68%
J 11%

K.79%
L37%
M26%
N7.1%
O77%

P16%
Q 1%
R6.2%
563%
T90%

U28% Z 04%
V 86%

W 2.4%

X 11%

Y 20%

ETAONIHSRDLUMWCFGYPBVKQXJIZ

short encodings!
Why should we try to minimize
the maximum length of a codeword?

If encoding A-Z, we will be happy if
the “average codeword" is short.

Morse Code
A.- F..-. K-.- P.--. U..- Z--..
B-... G--. L.-.. Q--.- V.-
C-.-. H.... M -- R.-. W.--
D-.. I.. N-. S... X-..-
E. J.--- O --- T- Y-.--

ETAONIHSRDLUMWCFGYPBVKQXJIZ

Given frequencies for A-Z,

what is the optimal

prefix-free encoding of the
alphabet?

Ie., one that minimizes the

average code length

Huffman Codes: Optimal Prefix-free
Codes Relative to a Given Distribution

Here is a Huffman code based on the English letter
frequencies given earlier:

Al011 F 101001 K 10101000 P 111000 U 00100
8111001 6101000 L 11101 Q1010100100 V1010101
€01010 H 1100 M 00101 ROO11 W 01011
00100 giii] N 1000 s1101 X 1010100101
E000 71010100110 01001 ToI Y 101011

Z 1010100111

But Huffman coding uses only letter frequencies.

For any fixed language, we can use correlations!
E.g., Q is almost always followed by U...

Random words

Randomly generated letters from A-Z, space
not using the frequencies at all:

XFOML RXKHRJFFJUJ ALPWXFWJXY)
FFJEYVJCQSGHYD QPAAMKBZAACIBZLKJQD

11

Random words

Using only single character frequencies:

OCRO HLO RGWR NMIELWIS EU LL NBNESEBYA TH
EEI ALHENHTTPA OOBTTVA NAH BRL

Random words

Each letter depends on the previous letter:

ON IE ANTSOUTINYS ARE T INCTORE ST BE S
DEAMY ACHIN D ILONASIVE TUCOOWE AT
TEASONARE FUSO TIZIN ANDY TOBE SEACE CTISBE

Random words

Each letter depends on 2 previous letters:

IN NO IST LAT WHEY CRATICT FROURE BIRS
GROCID PONDENOME OF DEMONSTURES OF THE
REPTAGIN IS REGOACTIONA OF CRE

Random words

Each letter depends on 3 previous letters:

THE GENERATED JOB PROVIDUAL BETTER TRAND
THE DISPLAYED CODE, ABOVERY UPONDULTS WELL
THE CODERST IN THESTICAL IT DO HOCK
BOTHEMERG.

(INSTATES CONS ERATION. NEVER ANY OF PUBLE
AND TO THEORY. EVENTIAL CALLEGAND TO ELAST
BENERATED IN WITH PIES AS IS WITH THE)

References

The Mathematical Theory of Communication,
by C. Shannon and W. Weaver

Elements of Information Theory, by T. Cover
and J. Thomas

12

