Great Theoretical Ideas In Computer Science

Steven Rudich

CS 15-251

Spring 2005

Lecture 12

Feb 17, 2005

Carnegie Mellon University

Ancient Wisdom: Primes, Continued Fractions, The Golden Ratio, and Euclid's GCD

$$\frac{3+\sqrt{13}}{2} = 3 + \frac{1}{3+\frac$$

Definition: A number > 1 is prime if it has no other factors, besides 1 and itself.

Each number can be factored into primes in a unique way. [Euclid]

Definition: A number > 1 is prime if it has no other factors, besides 1 and itself.

Primes: 2, 3, 5, 7, 11, 13, 17, ...

Factorizations:

Let n be the least counter-example.

Hence, n has at least two ways of being written as a product of primes:

$$n = p_1 p_2 ... p_k = q_1 q_2 ... q_t$$

The p's must be totally different primes than the q's or else we could divide both sides by one of a common prime and get a smaller counter-example.

Without loss of generality, assume $p_1 > q_1$.

Let n be the least counter-example.

$$n = p_1 p_2 ... p_k = q_1 q_2 ... q_t$$

$$n \ge p_1 p_1 > p_1 q_1 + 1$$

$$m = n - p_1 q_1$$

[with $p_1 > q_1$]

[since $p_1 > q_1$]

[hence 1 < m < n]

Let n be the least counter-example.

$$n = p_1 p_2 ... p_k = q_1 q_2 ... q_t$$

 $n \ge p_1 p_1 > p_1 q_1 + 1$

 $m = n - p_1q_1$

Notice: $m = p_1(p_2 ... p_k - q_1) = q_1(q_2 ... q_t - p_1)$

Thus, $p_1|m$ and $q_1|m$

[with $p_1 > q_1$]

[since $p_1 > q_1$]

[hence 1 < m < n]

Let n be the least counter-example.

$$n = p_1 p_2 ... p_k = q_1 q_2 ... q_t$$

[with $p_1 > q_1$]

$$n \ge p_1 p_1 > p_1 q_1 + 1$$

[since $p_1 > q_1$]

$$m = n - p_1 q_1$$

[hence 1 < m < n]

```
Notice: m = p_1(p_2 ... p_k - q_1) = q_1(q_2 ... q_t - p_1)
```

Thus, $p_1|m$ and $q_1|m$

By unique factorization of m, $p_1q_1|m$. Thus $m = p_1q_1z$

We have: $m = n - p_1q_1 = p_1(p_2 ... p_k - q_1) = p_1q_1z$

Let n be the least counter-example.

$$n = p_1 p_2 ... p_k = q_1 q_2 ... q_t$$

[with $p_1 > q_1$]

$$n \ge p_1 p_1 > p_1 q_1 + 1$$

[since $p_1 > q_1$]

$$m = n - p_1 q_1$$

[hence 1 < m < n]

Notice: $m = p_1(p_2 ... p_k - q_1) = q_1(q_2 ... q_t - p_1)$

Thus, $p_1|m$ and $q_1|m$

By unique factorization of m, $p_1q_1|m$. Thus $m = p_1q_1z$

We have: $m = n - p_1q_1 = p_1(p_2 ... p_k - q_1) = p_1q_1z$

Dividing by p_1 we obtain: $(p_2 ... p_k - q_1) = q_1 z$ $p_2 ... p_k = q_1 z + q_1 = q_1(z+1) \Rightarrow q_1 | p_2 ... p_k$

Let n be the least counter-example.

$$n = p_1 p_2 ... p_k = q_1 q_2 ... q_t$$

[with $p_1 > q_1$]

$$n \ge p_1 p_1 > p_1 q_1 + 1$$

[since $p_1 > q_1$]

$$m = n - p_1 q_1$$

[hence 1 < m < n]

Notice: $m = p_1(p_2 ... p_k - q_1) = q_1(q_2 ... q_t - p_1)$

Thus, $p_1|m$ and $q_1|m$

By unique factorization of m, $p_1q_1|m$. Thus $m = p_1q_1z$

We have: $m = n - p_1q_1 = p_1(p_2 ... p_k - q_1) = p_1q_1z$

Dividing by p_1 we obtain: $(p_2 ... p_k - q_1) = q_1 z$

 $p_2 ... p_k = q_1 z + q_1 = q_1(z+1) \Rightarrow q_1 | p_2 ... p_k$

Now by unique factorization of $p_2...p_k$, q_1 must be one of $p_2,...,p_k$. But this contradicts the fact that the p's and q's are disjoint.

Multiplication
might just be a "one-way" function
Multiplication is fast to compute
Reverse multiplication is apparently slow

We have a feasible method to multiply 1000 bit numbers [Egyptian multiplication]

Factoring the product of two random 1000 bit primes has no known feasible approach.

Grade School GCD algorithm

GCD(A,B) is the greatest common divisor, i.e., the largest number that goes evenly into both A and B.

What is the GCD of 12 and 18?

 $12 = 2^2 * 3$ $18 = 2*3^2$

Common factors: 21 and 31

Answer: 6

How to find GCD(A,B)?

A Naïve method:

Factor A into prime powers.

Factor B into prime powers.

Create GCD by multiplying together each common prime raised to the highest power that goes into both A and B.

This requires factoring A and B.

No one knows a particularly fast way to factor numbers in general.

Ancient Recursion: Euclid's GCD algorithm

```
Euclid(A,B) // requires A \ge B \ge 0
If B=0 then return A
else return Euclid(B, A mod B)
```

A small example

```
Euclid(A,B) // requires A \ge B \ge 0
If B=0 then return A
else return Euclid(B, A mod B)
```

```
Euclid(67,29) 67 mod 29 = 9

Euclid(29,9) 29 mod 9 = 2

Euclid(9,2) 9 mod 2 = 1

Euclid(2,1) 2 mod 1 = 0

Euclid(1,0) outputs 1
```

Note: GCD(67, 29) = 1

But is it correct?

```
Euclid(A,B) // requires A \ge B \ge 0
If B=0 then return A
else return Euclid(B, A mod B)
```

Claim: $GCD(A,B) = GCD(B, A \mod B)$ $d|A \text{ and } d|B \Leftrightarrow d| (A - kB)$ The set of common divisors of A, B equals the set of common divisors of B, A-kB.

Does the algorithm stop?

```
Euclid(A,B) // requires A \ge B \ge 0
If B=0 then return A
else return Euclid(B, A mod B)
```

Claim: A mod B $< \frac{1}{2}$ A

Proof:

If B $> \frac{1}{2}$ A then A mod B = A - B $< \frac{1}{2}$ A

If B $< \frac{1}{2}$ A then any X Mod B < B $< \frac{1}{2}$ A

If B $= \frac{1}{2}$ A then A mod B = 0

Does the algorithm stop?

```
Euclid(A,B) // requires A \ge B \ge 0
If B=0 then return A
else return Euclid(B, A mod B)
```

GCD(A,B) calls GCD(B, A mod B)


```
Euclid(A,B) // requires A \ge B \ge 0
If B=0 then return A
else return Euclid(B, A mod B)
```

GCD(A,B) calls $GCD(B, \langle \frac{1}{2}A)$

```
Euclid(A,B) // requires A \ge B \ge 0
If B=0 then return A
else return Euclid(B, A mod B)
```

GCD(A,B) calls $GCD(B, \langle \frac{1}{2}A)$

which calls $GCD(\langle \frac{1}{2}A, B \mod \langle \frac{1}{2}A \rangle)$


```
Euclid(A,B) // requires A \ge B \ge 0
If B=0 then return A
else return Euclid(B, A mod B)
```

Every two recursive calls, the input numbers drop by half.

Euclid(A,B) // requires $A \ge B \ge 0$ If B=0 then return A else return Euclid(B, A mod B)

Theorem:

If two input numbers have an n bit binary representation, Euclid Algorithm will not take more than 2n calls to terminate.


```
EUCLID(A,B) // requires A \ge B \ge 0 If B=0 then Return A else Return Euclid(B, A mod B)
```

```
Euclid(67,29) 67 - 2*29 = 67 mod 29 = 9

Euclid(29,9) 29 - 3*9 = 29 mod 9 = 2

Euclid(9,2) 9 - 4*2 = 9 mod 2 = 1

Euclid(2,1) 2 - 2*1 = 2 mod 1 = 0

Euclid(1,0) outputs 1
```

Let <r,s> denote the number r*67 + s*29. Calculate all intermediate values in this representation.

```
67=<1,0> 29=<0,1>
Euclid(67,29) 9=<1,0> - 2*<0,1> 9 =<1,-2>
Euclid(29,9) 2=<0,1> - 3*<1,-2> 2=<-3,7>
Euclid(9,2) 1=<1,-2> - 4*<-3,7> 1=<13,-30>
Euclid(2,1) 0=<-3,7> - 2*<13,-30> 0=<-29,67>
```

Euclid(1,0) outputs
$$1 = 13*67 - 30*29$$

Euclid's Extended GCD algorithm

Input: X,Y
Output: r,s,d such that rX+sY = d = GCD(X,Y)

	0/-<1,0> 29-<0,1>
9=67 - 2*29	9 =<1,-2>
2=29 - 3*9	2=<-3,7>
1=9 - 4*2	1=<13,-30>
0=2 - 2*1	0=<-29,67>
	2=29 - 3*9 1=9 - 4*2

47-11 N 20-10 1V

Euclid(1,0) outputs 1 = 13*67 - 30*29

The unique inverse of a must exist because the x row contains a permutation of the elements and hence contains a unique 1.

*	1	У	3	4
1	1	2	3	4
2	2	4	1	3
X	3	1	4	2
4	4	3	2	1

TO QUICKLY COMPUTE Y FROM X:

Run Extended_Euclid(x,n). It returns a,b, and d such that ax+bn = dBut d = GCD(x,n) = 1, so ax + bn = 1Hence MODULO n: ax = 1 (mod n) Thus, a is the multiplicative inverse of x.

The RSA story:

Pick 2 distinct. random 1000 bit primes, p and q.

Multiply them to get: n
Multiply (p-1) and (q-1) to compute $\phi(n)$ Randomly pick an e s.t. GCD(e,n) = 1.

Publish n and e

Compute the multiplicative inverse of e mod

 $(M^e)^d = m^{ed} = m^1 \pmod{n}$

 $\phi(n)$ to get a secret number d.

Leonardo Fibonacci

In 1202, Fibonacci proposed a problem about the growth of rabbit populations.

Inductive Definition or Recurrence Relation for the Fibonacci Numbers

Stage 0, Initial Condition, or Base Case: Fib(0) = 0; Fib (1) = 1

Inductive Rule For n>1, Fib(n) = Fib(n-1) + Fib(n-2)

n	0	1	2	3	4	5	6	7
Fib(n)	0	1	1	2	3	5	8	13

A (Simple) Continued Fraction Is Any Expression Of The Form:

$$a + \frac{1}{b + \frac{1}{c + \frac{1}{d + \frac{1}{e + \frac{1}{f + \frac{1}{i + \frac{1}{j + \dots}}}}}}}$$

where a, b, c, ... are whole numbers.

A Continued Fraction can have a finite or infinite number of terms.

$$a + \frac{1}{b + \frac{1}{c + \frac{1}{d + \frac{1}{e + \frac{1}{f + \frac{1}{i + \frac{1}{j + \dots}}}}}}}$$

We also denote this fraction by [a,b,c,d,e,f,...]

A Finite Continued Fraction

$$2 + \frac{1}{3 + \frac{1}{4 + \frac{1}{2}}}$$

Denoted by [2,3,4,2,0,0,0,...]

An Infinite Continued Fraction

Recursively Defined Form For CF

CF = whole number, or

= whole number
$$+\frac{1}{CF}$$

$$\frac{5}{3} = 1 + \frac{1}{1 + \frac{1}{2}}$$

$$\frac{5}{3} = 1 + \frac{1}{1 + \frac{1}{1}}$$

$$1 + \frac{1}{1 + \frac{1}{1}}$$

$$= [1,1,1,1,0,0,0,...]$$

$$? = 1 + \frac{1}{1 + \frac{$$

$$\frac{8}{5} = 1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1}}}$$

$$= [1,1,1,1,0,0,0,...]$$

$$\frac{13}{8} = 1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1}}}}$$

$$= [1,1,1,1,1,0,0,0,0,...]$$

A Pattern?

Let
$$r_1 = [1,0,0,0,...] = 1$$

 $r_2 = [1,1,0,0,0,...] = 2/1$
 $r_3 = [1,1,1,0,0,0...] = 3/2$
 $r_4 = [1,1,1,1,0,0,0...] = 5/3$
and so on.

Theorem:

$$r_n = Fib(n+1)/Fib(n)$$

Proposition: Any finite continued fraction evaluates to a rational.

Theorem: Any rational has a finite continued fraction representation. (proof later)

Hmm.

Finite CFs = Rationals.

Then what do infinite continued fractions represent?

An infinite continued fraction

$$\sqrt{2} = 1 + \frac{1}{2 + \dots}}}}}}}$$

Quadratic Equations

$$X^2 - 3x - 1 = 0$$

$$X = \frac{3 + \sqrt{13}}{2}$$

$$X^2 = 3X + 1$$

 $X = 3 + 1/X$

$$X = 3 + 1/X = 3 + 1/[3 + 1/X] = ...$$

A Periodic CF

$$\frac{3+\sqrt{13}}{2} = 3 + \frac{1}{3+\frac{1}{3+\frac{1}{3+\frac{1}{3+\frac{1}{3+\frac{1}{3+\frac{1}{3+\dots}}}}}}}$$

Theorem: Any quadratic solution has a periodic continued fraction.

Converse: Any periodic continued fraction is the solution of a quadratic equation. (homework)

So they express even more

What about those non-recurring continued fractions?

Non-periodic CFs

$$e-1=1+\frac{1}{1+\frac{1}{2+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\dots}}}}}}}$$

What is the pattern?

$$\pi = 3 + \cfrac{1}{7 + \cfrac{1}{15 + \cfrac{1}{1 + \cfrac$$

More good news...

Let $\alpha = [a_1, a_2, a_3, ...]$ be a CF.

Define $C_1 = [a_1,0,0,0,0,0...]$ Define $C_2 = [a_1,a_2,0,0,0...]$ Define $C_3 = [a_1,a_2,a_3,0...]$ and so on.

Convergents

Let
$$\alpha = [a_1, a_2, a_3, ...]$$
 be a CF.

Define:
$$C_1 = [a_1,0,0,0,0,0..]$$

 $C_2 = [a_1, a_2, 0, 0, 0, ...]$

 $C_3 = [a_1, a_2, a_3, 0, 0, ...]$ and so on.

 C_k is called the k-th convergent of α

 α is the limit of the sequence C_1 , C_2 , C_3 ,...

Best Approximator Theorem

A rational p/q is the <u>best approximator</u> to a real α if no rational number of denominator smaller than q comes closer to α .

BEST APPROXIMATOR THEOREM:

Given any CF representation of α , each convergent of the CF is a best approximator for α !

Best Approximators of π

$$C_1 = 3$$

$$C_2 = 22/7$$

$$C_3 = 333/106$$

$$C_4 = 355/113$$

$$C_5 = 103993/33102$$

$$C_6 = 104348/33215$$

$$\pi = 3 + \frac{1}{7 + \frac{1}{15 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \dots}}}}}}}$$

$$102$$

Khufu

•2589-2566 B.C.

•2,300,000 blocksaveraging 2.5 tons each

Great Pyramid at Gizeh

$$\frac{a}{b} = 1.618$$

The ratio of the altitude of a face to half the base

Golden Ratio: the divine proportion

 ϕ = 1.6180339887498948482045...

"Phi" is named after the Greek sculptor <u>Phi</u>dias

Parthenon, Athens (400 B.C.)

Pentagon

Ratio of height of the person to the height of a person's navel

Definition of ϕ (Euclid)

Ratio obtained when you divide a line segment into two unequal parts such that the ratio of the whole to the larger part is the same as the ratio of the larger to the smaller.

$$\phi = \frac{AC}{AB} = \frac{AB}{BC}$$

$$\phi^2 = \frac{AC}{BC}$$

$$\phi^2 - \phi = \frac{AC}{BC} - \frac{AB}{BC} = \frac{BC}{BC} = 1$$

$$\phi^2 - \phi - 1 = 0$$

Definition of ϕ (Euclid)

Ratio obtained when you divide a line segment into two unequal parts such that the ratio of the whole to the larger part is the same as the ratio of the larger to the smaller.

$$\phi^2 - \phi - 1 = 0$$

$$\phi = \frac{\sqrt{5} + 1}{2}$$

The Divine Quadratic

$$\phi^2 - \phi - 1 = 0$$

$$\phi = \frac{\sqrt{5} + 1}{2}$$

$$\phi = 1 + 1/\phi$$

Expanding Recursively

$$\phi = 1 + \frac{1}{\phi}$$

Expanding Recursively

$$\phi = 1 + \frac{1}{\phi}$$

$$= 1 + \frac{1}{1 + \frac{1}{\phi}}$$

Expanding Recursively

$$\phi = 1 + \frac{1}{\phi}$$

$$= 1 + \frac{1}{1 + \frac{1}{\phi}}$$

$$= 1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{\phi}}}$$

Continued Fraction Representation

$$\phi = 1 + \frac{1}{1 + \dots}}}}}}}$$

Continued Fraction Representation

$$\frac{1+\sqrt{5}}{2} = 1 + \frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\dots}}}}}}} = 1 + \frac{1}{1+\frac{1}{1+\frac{1}{1+\dots}}}$$

Remember?

We already saw the convergents of this CF
[1,1,1,1,1,1,1,1,1,1,1,1]
are of the form
Fib(n+1)/Fib(n)

Hence:
$$\lim_{n\to\infty} \frac{F_n}{F_{n-1}} = \phi = \frac{1+\sqrt{5}}{2}$$

1,1,2,3,5,8,13,21,34,55,....

```
2/1 = 2

3/2 = 1.5

5/3 = 1.666...

8/5 = 1.6

13/8 = 1.625

21/13 = 1.6153846...

34/21 = 1.61904...
```

φ = 1.6180339887498948482045

Continued fraction representation of a standard fraction

$$\frac{67}{29} = 2 + \frac{1}{3 + \frac{1}{4 + \frac{1}{2}}}$$

$$67/29 = 2$$
 with remainder $9/29 = 2 + 1/(29/9)$

$$\frac{67}{29} = 2 + \frac{1}{\frac{29}{9}} = 2 + \frac{1}{3 + \frac{2}{9}} = + \frac{1}{3 + \frac{1}{4 + \frac{1}{2}}}$$

A Representational Correspondence

$$\frac{67}{29} = 2 + \frac{1}{\frac{29}{9}} = 2 + \frac{1}{3 + \frac{2}{9}} 2 + \frac{1}{3 + \frac{1}{4 + \frac{1}{2}}}$$

Euclid's GCD = Continued Fractions

$$\frac{A}{B} = \left\lfloor \frac{A}{B} \right\rfloor + \frac{1}{B}$$

$$A \mod B$$

Euclid(A,B) = Euclid(B, A mod B) Stop when B=0

Theorem: All fractions have finite continuous fraction expansions

$$\frac{A}{B} = \left\lfloor \frac{A}{B} \right\rfloor + \frac{1}{B}$$

$$A \mod B$$

Euclid(A,B) = Euclid(B, A mod B) Stop when B=0

Fibonacci Magic Trick

Another Trick!

REFERENCES

Continued Fractions, C. D. Olds

The Art Of Computer Programming, Vol 2, by Donald Knuth