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Ancient Wisdom:
Primes, Continued Fractions, The

Golden Ratio, and Euclid's GCD
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Definition: A number > 1 is
Q’ prime if it has no other
factors, besides 1 and itself.

Each number can be factored
Into primes in a unique way.

[Euclid]
/




Theorem: Each natural has a unique
factorization into primes written in
non-decreasing order.

Definition: A number > 1 is prime if it has no
other factors, besides 1 and itself.

Primes: 2,3,5,7,11,13,17, ...

Factorizations:
42=2*3*7
84=-=2*2*3*7
13 =13




Theorem: Each natural has a unique
factorization into primes written in
non-decreasing order.

Let n be the least counter-example.

Hence, n has at least two ways of being written as a
product of primes:

N=P1P2.-Pc=9192 - G4

The p's must be totally different primes than the q's
or else we could divide both sides by one of a
common prime and get a smaller counter-example.

Without loss of generality, assume p; > q; .




Theorem: Each natural has a unique
factorization into primes written in
non-decreasing order.

Let n be the least counter-example.
N=P1P2--Pc=9192 - Gt [with p; > q,]

n>pPp;>pigs+ 1 [since p; > q4]
m=n- pq, [hence 1< m < n]




Theorem: Each natural has a unique
factorization into primes written in
non-decreasing order.

Let n be the least counter-example.
nN=Pp;Pz - Pk =G Gz - Gy [with p; > q;]

n>pp;>p;q+ 1 [since p; > q,]
m:n-p1q1 [hencel<m<n]

Notice: m = py(p, .. Pk = 91) = 91(q2 - G+ - P1)
Thus, p;|m and q;|m




Theorem: Each natural has a unique
factorization into primes written in
non-decreasing order.

Let n be the least counter-example.
nN=Pp;Pz - Pk =G Gz - Gy [with p; > q;]

n>pp;>p;q+ 1 [since p; > q,]
m:n-p1q1 [hencel<m<n]

Notice: m = py(p, .. Pk~ 91) = 91(q2 - G+ - P1)
Thus, p;|/m and q;|m

By unique factorization of m, p,q;|m. Thus m = p,q,z
We have: m=n-piq; = ps( P2 - Px - 91) = P19:1Z




Theorem: Each natural has a unique
factorization into primes written in
non-decreasing order.

Let n be the least counter-example.
nN=Pp;Pz - Pk =G Gz - Gy [with p; > q;]

n>pp;>p;q+ 1 [since p; > q,]
m:n-p1q1 [hencel<m<n]

Notice: m = py(p, .. Pk~ 91) = 91(q2 - G+ - P1)
Thus, p;|/m and q;|m

By unique factorization of m, p,q;|m. Thus m = p,q,z
We have: m = n-p,q; = p;( P, .- Pk - 91 ) = P19:2

Dividing by p; we obtain: (p, ..px - q;) = 9,2
P2 . Pk = §1Z + 1 = G1(z+1) = qylp,..px




Theorem: Each natural has a unique
factorization into primes written in
non-decreasing order.

Let n be the least counter-example.
nN=Pp;Pz - Pk =G Gz - Gy [with p; > q;]

n>pp;>p;q+ 1 [since p; > q,]
m:n-p1q1 [hencel<m<n]

Notice: m = py(p, .. Pk~ 91) = 91(q2 - G+ - P1)
Thus, p;|/m and q;|m

By unique factorization of m, p,q;|m. Thus m = p,q,z
We have: m = n-p,q; = p;( P, .- Pk - 91 ) = P19:2

Dividing by p; we obtain: (p, .. px - q1) = g2

P2 - Pk = 912 + 1 = Gy(z+1) = qylpo...px
Now by unique factorization of p,..p,, g; must be one of p,,... p..
But this contradicts the fact that the p's and g's are disjoint.




Multiplication

might just be a "one-way" function
Multiplication is fast to compute
Reverse multiplication is apparently slow

We have a feasible method to multiply
1000 bit numbers [Egyptian

multiplication]

Factoring the product of two random
1000 bit primes has no known feasible
approach.




Grade School GCD algorithm

GCD(A,B) is the greatest common divisor, i.e., the
largest number that goes evenly into both A and B.

What is the GCD of 12 and 18?
12=22%*3 18 = 2*32

Common factors: 2! and 3!
Answer: 6




How to find GCD(A,B)?

A Naive method:

Factor A into prime powers.
Factor B into prime powers.

Create GCD by multiplying together each common
prime raised to the highest power that goes into
both A and B.
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Hang onl

This requires
factoring A and B.

No one knows a

particularly fast way
to factor numbers in

general.




Q/ EUCLID

had a much better way
to compute GCD!

\




Ancient Recursion:
Euclid's GCD algorithm

Euclid(A,B) // requires A=B>0
If B=0 then return A
else return Euclid(B, A mod B)




A small example

Euclid(A,B) // requires A=B>0
If B=0 then return A
else return Euclid(B, A mod B)

Note: GCD(67,29) =1

Euclid(67,29) 67 mod 29 = 9

Euclid(29,9) 29 mod9 =2

Euclid(9,2) O9mod2 =1

Euclid(2,1) 2modl =0
Euclid(1,0) outputs 1




But is it correct?

Euclid(A,B) // requires A=B>0
If B=0O then return A

else return Euclid(B, A mod B)

Claim: GCD(A,B) = GCD(B, A mod B)

d|Aand d|B = d| (A - kB)

The set of common divisors of A, B equals
the set of common divisors of B, A-kB.




Does the algorithm stop?

Euclid(A,B) // requires A=B>0
If B=0 then return A
else return Euclid(B, A mod B)

Claim: Amod B« 5 A
Proof:
IfB>3 AthenAmodB=A-B <5 A

If B<3 Athenany X ModB<B <3 A
IfB=%AthenAmodB=0




Does the algorithm stop?

Euclid(A,B) // requires A=B>0
If B=0 then return A
else return Euclid(B, A mod B)

GCD(A,B) calls GCD(B, A mod B)
|

Less than 5 of A




Euclid's GCD Termination

Euclid(A,B) // requires A=B>0
If B=0 then return A
else return Euclid(B, A mod B)

GCD(A,B) calls GCD(B, <3 A)




Euclid's GCD Termination

Euclid(A,B) // requires A=B>0
If B=0 then return A
else return Euclid(B, A mod B)

GCD(A,B) calls GCD(B, <3 A)

which calls GCD(<3A, B mod <3 A)

Less than 5 of A




Euclid's GCD Termination

Euclid(A,B) // requires A=B>0
If B=0 then return A
else return Euclid(B, A mod B)

Every two recursive calls,

the input numbers drop by
half.




Euclid's GCD Termination

Euclid(A,B) // requires A=B>0
If B=0O then return A

else return Euclid(B, A mod B)

Theorem:

If two input numbers have an n
bit binary representation,
Euclid Algorithm will not take
more than 2n calls to terminate.




¢ 3
Trick Question: « l

If X and Y are less than n,
what is a reasonable upper
bound on the number of
recursive calls Euclid(X,Y)
will make?.




Q/ Answer:.

If Xand Y are less than n,

Euclid(X,Y) will make no
more than 2log,n calls.




EUCLID(A,B) // requires A=B=0 If
B=0 then Return A
else Return Euclid(B, A mod B)

id(67,29) 67-2*29=67mod29=9
1d(29,9) 29-3*9=29mod9 =2
1d(9,2) 9-4%2 =9 mod?2 1
id(2,1) 2-2%1=2mod 1 0
id(1,0) outputs 1




Let <r,s> denote the number
r*67 + s*29 . Calculate all
intermediate values in this

representation.

67=<10> 29=<0,1>

Euclid(67,29) 9=<1,0> - 2*<0,1>
Euclid(29,9) 2=<0,1> - 3*<1,-2>
Euclid(9,2) 1=<1-2> - 4*<-3,7>
Euclid(2,1) 0=<-3,7> - 2*<13,-30>

Euclid(1,0) outputs 1=13*67 - 30*29




Euclid's Extended GCD algorithm

Input: XY
Output: r,s,d such that rX+sY = d = GCD(X,Y)

67=<1,0> 29=<0,1>
Euclid(67,29) 9=67 - 2*29 9 =<1,-2>
Euclid(29,9) 2=29 - 3*9 2=<-3,7>
Euclid(9,2) 1=9 - 4*2 1=<13,-30>
Euclid(2,1) 0=2 - 2*1 0=<-29,67>

Euclid(1,0) outputs 1=13*67 - 30*29




The multiplicative inverse of xe Z,” is
the unique ye Z,” such that
x*vy=,1

The unique inverse of a must exist because
’ the x row contains a permutation of the
elements and hence contains a unique 1.

v ]
2
4
1
3




';l The multiplicative inverse of xe Z,” is
the unique ye Z,” such that
x*vy=,1

TO QUICKLY COMPUTE Y FROM X:

Run Extended_Euclid(x,n).

It returns a,b, and d such that ax+bn = d
But d=6CD(x,n)=1,soax+bn=1
Hence MODULO n: ax = 1 (mod n)

Thus, a is the multiplicative inverse of x.




The RSA story:

Pick 2 distinct. random 1000 bit primes,
p and q.

Multiply them to get: n
Multiply (p-1) and (g-1) to compute @(n)
Randomly pick an e s.t. GCD(e,n) = 1.
Publish nand e
Compute the multiplicative inverse of e mod
@(n) to get a secret number d.

(Me)d =med = m! (mod n)




Leonardo Fibonacci

In 1202, Fibonacci proposed a problem
about the growth of rabbit populations.




Inductive Definition or
Recurrence Relation for the
Fibonacci Numbers

Stage O, Initial Condition, or Base Case:
Fib(0)=0; Fib (1) =1

Inductive Rule
For n>1, Fib(n) = Fib(n-1) + Fib(n-2)

n O 1|2
Fib(n) o1 |1




A (Simple) Continued Fraction Is Any
Expression Of The Form:

where a, b, ¢, ... are whole numbers.




A Continued Fraction can have a finite
or infinite number of terms.

We also denote this fraction by [a,b,c.d.ef,..]




A Finite Continued Fraction

4+

2

Denoted by [2,3,4,2,0,0,0,...]




An Infinite Continued Fraction

Denoted by [1,2,2,2,...]




Recursively Defined Form For CF

CF = whole number, or

1
= whole number + —

CF




Ancient Greek Representation:
Continued Fraction Representation




Ancient Greek Representation:
Continued Fraction Representation

1+}

1

=[1111000,.]




Ancient Greek Representation:
Continued Fraction Representation




Ancient Greek Representation:
Continued Fraction Representation

1+}
1

=[111110,0,0,..]




Ancient Greek Representation:
Continued Fraction Representation

13 _

=[111111000,..]




A Pattern?

Let r,=[1,000,.]=1
r, = [1,1,000,.]= 2/1
ry=[1,1,100,0.]= 3/2

ro=1[11110,00..1=5/3
and so on.

Theorem:
r, = Fib(n+1)/Fib(n)




Proposition: Any finite
continued fraction
evaluates to a rational.

Theorem: Any rational
has a finite continued
fraction representation.
(proof later)




Hmm.

Finite CFs = Rationals.

Then what do infinite
continued fractions
represent?




An infinite continued fraction

J2=1+




Quadratic Equations

X2-3x-1=0 X_3+\/]§
2

X2= 3X+ 1
X =3 +1/X

X=3+1/X=3+1/[3+1/X]=..




A Periodic CF




Theorem: Any quadratic
solution has a periodic
continued fraction.

Converse: Any periodic
continued fraction is the
solution of a quadratic
equation. (homework)




Q/ So they express even

more ....

What about those
hoh-recurring
continued fractions?




Non-periodic CFs




What is the pattern?

No one knhows!
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A

What a cool
representation!

Finite CF: Rationals

Periodic CF: Quadratic

roots

And some numbers reveal

hidden regularity.




More good news...

Let a =
[a;, @y, a3, .. ] be a CF.

Define C,; = [0;,0,0,0,0..]

Define C, = [a;,a,,0,0,0..]
Define C; = [a,,0,,03,0..]

and so on.




Convergents

Let a = [a, a,, a3, ...] be a CF.

Define:  €;=1[a;,0,0,0,0..]
CZ - [01,02,0,0,0,...]
C; = [a1,0,,05,0,0,...] and so on.

C, is called the k-th convergent of a

a is the limit of the sequence C;, C,, C;,...




Best Approximator Theorem

A rational p/q is the best approximator to a
real a if no rational number of denominator
smaller than q comes closer to a.

BEST APPROXIMATOR THEOREM:

Given any CF representation of a,
each convergent of the CF is a
best approximator for a |




Best Approximators of 1

C, = 22/7

C, = 333/106

C, = 355/113

Cs = 103993/33102

C, =104348/33215







Khufu

-2589-2566 B.C.

+2,300,000 blocks
averaging 2.5 tons each




Great Pyramid at Gizeh

300m (984ft)

137m (449ft)

96m (316ft)
92m (305ft)

55m (179ft)

i Eiffel Tower
Leaning Tower of Pisa
Big Ben

Statue of Liberty




300m (984ft)

i Eiffel Tower
Leaning Tower of Pisa

Big Ben

Statue of Liberty

137m (449ft)

96m (316ft)
92m (305ft) /i
55m (179ft) |

The ratio of the altitude of a face to half the base




Golden Ratio: the divine proportion

®=1.6180339887498948482045...

"Phi" is named after the Greek sculptor
Phidias




Parthenon, Athens (400 B.C.)




Pentagon




Ratio of height of the person to
the height of a person's navel

&




Definition of ¢ (Euclid)

Ratio obtained when you divide a line segment
into Two unequal parts such that the ratio of
the whole to the larger part is the same as
the ratio of the larger to the smaller.

_AC _AB

~AB BC




Definition of ¢ (Euclid)

Ratio obtained when you divide a line segment
into Two unequal parts such that the ratio of
the whole to the larger part is the same as
the ratio of the larger to the smaller.




The Divine Quadratic




Expanding Recursively

1

p=1+=
@




Expanding Recursively




Expanding Recursively

p=1+"




Continued Fraction Representation




Continued Fraction Representation

1+\/§:




Remember?

We already saw the convergents of this CF

are of the form
Fib(n+1)/Fib(n)

Hence: lim,




11,2,3,5,8,13,21,34,55,....

2

1.5

1.666...

1.6

1.625
1.6153846...
1.61904...

1.6180339887498948482045




Continued fraction representation of a
standard fraction

67_2+

59"




67/29 =2 with remainder 9/29
=2+1/(29/9)




A Representational Correspondence

2+

L1
29

9

Euclid(67,29) 67 div29 =2
Euclid(29,9) 29div9 =3
Euclid(9,2) 9div2d =4
Euclid(2,1) 2divl =2
Euclid(1,0)




Euclid's GCD = Continued Fractions

A | A

B | B

Amod B

Euclid(A,B) = Euclid(B, A mod B)
Stop when B=0




Theorem: All fractions have finite
continuous fraction expansions

a
B

a
B

+

1

B

Amod B

Euclid(A,B) = Euclid(B, A mod B)
Stop when B=0
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Another Trickl
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