Modular Arithmetic and the RSA Cryptosystem

\[p^1 \equiv 1 \]

\[
\begin{align*}
\text{MAX}(a,b) + \text{MIN}(a,b) &= a+b \\
n|m &\text{ means that } m \text{ is a an integer multiple of } n. \\
\text{We say that “} n \text{ divides } m\text{”}. \\
\text{True: } 5|25 \ 2|-66 \ 7|35, \\
\text{False: } 4|5 \ 8|2
\end{align*}
\]

Greatest Common Divisor:

\[\text{GCD}(x,y) = \text{greatest } k \geq 1 \text{ s.t. } k|x \text{ and } k|y. \]

Least Common Multiple:

\[\text{LCM}(x,y) = \text{smallest } k \geq 1 \text{ s.t. } x|k \text{ and } y|k. \]

Prop:

\[\text{GCD}(x,y) = xy/\text{LCM}(x,y) \]
\[\text{LCM}(x,y) = xy/\text{GCD}(x,y) \]
\[GCD(x, y) = \frac{xy}{LCM(x, y)} \]
\[LCM(x, y) = \frac{xy}{GCD(x, y)} \]

\(x = 2^2 \times 3 = 12; \ y = 3^2 \times 5 = 45 \)

\[GCD(12, 45) = 3 \]
\[LCM(12, 45) = 2^2 \times 3^2 \times 5 = 180 \]
\[x \times y = 540 \]

\[GCD(x, y) \times LCM(x, y) = xy \]

\[\text{MAX}(a, b) + \text{MIN}(a, b) = a + b \]

\((a \mod n)\) means the remainder when \(a\) is divided by \(n\).

If \(ad + r = n, 0 \leq r < n\)
Then \(r = (a \mod n)\)
and \(d = (a \div n)\)

(a \(\equiv\) b \[mod n\])
\(a \equiv_n b\)
“a and b are equivalent modulo n”

iff \((a \mod n) = (b \mod n)\)
iff \(n | (a - b)\)

\(31 \equiv 81 \mod 2\)

\[31 \equiv 81 \mod 2 \]

\[31 \equiv_2 81 \]

\((31 \mod 2) = 1 = (81 \mod 2)\)

\(2 | (31 - 81)\)

\(\equiv_n\) is an equivalence relation

In other words,

Reflexive:
\(a \equiv_n a\)
Symmetric:
\((a \equiv_n b) \Rightarrow (b \equiv_n a)\)
Transitive:
\((a \equiv_n b \text{ and } b \equiv_n c) \Rightarrow (a \equiv_n c)\)
\(a \equiv_n b \leftrightarrow n|(a-b) \)

“\(a \) and \(b \) are equivalent modulo \(n \)”

\(\equiv_n \) induces a natural partition of the integers into \(n \) classes:

\(a \) and \(b \) are said to be in the same “residue class” or “congruence class” exactly when \(a \equiv_n b \).

Define the residue class \([i]\) to be the set of all integers that are congruent to \(i \) modulo \(n \).

Residue Classes Mod 3:

\[[0] = \{ \ldots, -6, -3, 0, 3, 6, \ldots \} \]
\[[1] = \{ \ldots, -5, -2, 1, 4, 7, \ldots \} \]
\[[2] = \{ \ldots, -4, -1, 2, 5, 8, \ldots \} \]
\[[-6] = \{ \ldots, -6, -3, 0, 3, 6, \ldots \} \]
\[[7] = \{ \ldots, -5, -2, 1, 4, 7, \ldots \} \]
\[[-1] = \{ \ldots, -4, -1, 2, 5, 8, \ldots \} \]

Equivalence mod \(n \) implies equivalence mod any divisor of \(n \).

If \((x \equiv_n y) \) and \((k|n) \)
Then: \(x \equiv_k y \)

Example: \(10 \equiv_6 16 \Rightarrow 10 \equiv_3 16 \)

If \((x \equiv_n y) \) and \((k|n) \)
Then: 1) \(x+a \equiv_n y+b \)
2) \(x-a \equiv_n y-b \)
3) \(xa \equiv_n yb \)

Fundamental lemma of plus, minus, and times modulo \(n \):
Equivalently,
If \(n \mid (x-y) \) and \(n \mid (a-b) \) Then:
1) \(n \mid (x-y + a-b) \)
2) \(n \mid (x-y - [a-b]) \)
3) \(n \mid (xa-yb) \)

Proof of 3:
\[xa-yb = a(x-y) - y(b-a) \]
\(n \mid a(x-y) \) and \(n \mid y(b-a) \)

Fundamental lemma of plus minus, and times modulo \(n \):
When doing plus, minus, and time modulo \(n \), I can at any time in the calculation replace a number with a number in the same residue class modulo \(n \)

Please calculate in your head:
\[
329 \times 666 \mod 331 \\
-2 \times 4 = -8 = 323
\]

A Unique Representation System Modulo \(n \):
We pick exactly one representative from each residue class. We do all our calculations using the representatives.

Unique representation system modulo 3
Finite set \(S = \{0, 1, 2\} \)
+ and * defined on \(S \):

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Unique representation system modulo 3
Finite set \(S = \{0, 1, -1\} \)
+ and * defined on \(S \):

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>-1</td>
<td>0</td>
<td>-1</td>
<td>1</td>
</tr>
</tbody>
</table>
The reduced system modulo n:

$Z_n = \{0, 1, 2, \ldots, n-1\}$

Define $+_n$ and \cdot_n:

$a +_n b = (a+b \mod n)$

$a \cdot_n b = (a*b \mod n)$

$+_n$ and \cdot_n are associative binary operators from $Z_n \times Z_n \rightarrow Z_n$:

When $\diamondsuit = +_n$ or \cdot_n:

- **Closure** $x, y \in Z_n \implies x \diamondsuit y \in Z_n$
- **Associativity** $x, y, z \in Z_n \implies (x \diamondsuit y) \diamondsuit z = x \diamondsuit (y \diamondsuit z)$

The reduced system modulo 3

$Z_3 = \{0, 1, 2\}$

Two binary, associative operators on Z_3:

<table>
<thead>
<tr>
<th>$+_3$</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>\cdot_3</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

The reduced system modulo 2

$Z_2 = \{0, 1\}$

Two binary, associative operators on Z_2:

<table>
<thead>
<tr>
<th>$+_2$</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>\cdot_2</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

The Boolean interpretation of $Z_2 = \{0, 1\}$

0 means FALSE 1 means TRUE

<table>
<thead>
<tr>
<th>$+_2_{\text{XOR}}$</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>\cdot_2_{AND}</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
The reduced system $Z_4 = \{0, 1, 2, 3\}$

\[
\begin{array}{c|cccc}
+ & 0 & 1 & 2 & 3 \\
0 & 0 & 1 & 2 & 3 \\
1 & 2 & 3 & 0 & 1 \\
2 & 3 & 0 & 1 & 2 \\
3 & 0 & 1 & 2 & 3 \\
\end{array}
\]

\[
\begin{array}{c|cccc}
\times & 0 & 1 & 2 & 3 \\
0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 2 & 3 \\
2 & 0 & 2 & 0 & 2 \\
3 & 0 & 3 & 2 & 1 \\
\end{array}
\]

The reduced system $Z_5 = \{0, 1, 2, 3, 4\}$

\[
\begin{array}{c|cccc}
+ & 0 & 1 & 2 & 3 & 4 \\
0 & 0 & 1 & 2 & 3 & 4 \\
1 & 2 & 3 & 4 & 0 & 1 \\
2 & 3 & 4 & 0 & 1 & 2 \\
3 & 4 & 0 & 1 & 2 & 3 \\
4 & 0 & 1 & 2 & 3 & 4 \\
\end{array}
\]

\[
\begin{array}{c|cccc}
\times & 0 & 1 & 2 & 3 & 4 \\
0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 2 & 3 & 4 \\
2 & 0 & 2 & 4 & 1 & 3 \\
3 & 0 & 3 & 1 & 4 & 2 \\
4 & 0 & 4 & 3 & 2 & 1 \\
\end{array}
\]

The reduced system $Z_6 = \{0, 1, 2, 3, 4, 5\}$

\[
\begin{array}{c|cccc}
+ & 0 & 1 & 2 & 3 & 4 & 5 \\
0 & 0 & 1 & 2 & 3 & 4 & 5 \\
1 & 1 & 2 & 3 & 4 & 5 & 0 \\
2 & 2 & 3 & 4 & 5 & 0 & 1 \\
3 & 3 & 4 & 5 & 0 & 1 & 2 \\
4 & 4 & 5 & 0 & 1 & 2 & 3 \\
5 & 5 & 0 & 1 & 2 & 3 & 4 \\
\end{array}
\]

\[
\begin{array}{c|cccc}
\times & 0 & 1 & 2 & 3 & 4 & 5 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 2 & 3 & 4 & 5 \\
2 & 0 & 2 & 4 & 1 & 3 & 5 \\
3 & 0 & 3 & 1 & 4 & 2 & 0 \\
4 & 0 & 4 & 3 & 2 & 1 & 0 \\
5 & 0 & 5 & 4 & 3 & 2 & 1 \\
\end{array}
\]

An operator has the permutation property if each row and each column has a permutation of the elements.

For every n, \ast_n on \mathbb{Z}_n has the permutation property

\[
\begin{array}{c|cccc}
\ast & 0 & 1 & 2 & 3 & 4 & 5 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 2 & 3 & 4 & 5 \\
2 & 0 & 2 & 4 & 1 & 3 & 5 \\
3 & 0 & 3 & 1 & 4 & 2 & 0 \\
4 & 0 & 4 & 3 & 2 & 1 & 0 \\
5 & 0 & 5 & 4 & 3 & 2 & 1 \\
\end{array}
\]

There are exactly 8 distinct multiples of 3 modulo 8.
There are exactly 8 distinct multiples of 3 modulo 8.
There are exactly 8 distinct multiples of 3 modulo 8.

There are exactly 2 distinct multiples of 4 modulo 8.

There is exactly 1 distinct multiple of 8 modulo 8.

There are exactly 4 distinct multiples of 6 modulo 8.
There are exactly 4 distinct multiples of 6 modulo 8

There are exactly 4 distinct multiples of 6 modulo 8

There are exactly 4 distinct multiples of 6 modulo 8

There are exactly 4 distinct multiples of 6 modulo 8

There are exactly \(\text{LCM}(n,c)/c \) distinct multiples of \(c \) modulo \(n \)

Can you see the general rule?
There are exactly $\frac{\text{LCM}(n,c)}{c}$ distinct multiples of c modulo n.

There are exactly $\frac{n}{(nc/\text{LCM}(n,c))}$ distinct multiples of c modulo n.

There are exactly $\frac{n}{\text{GCD}(c,n)}$ distinct multiples of c modulo n.

The multiples of c modulo n is the set:

$$\{0, c, c+n, c+2n, c+3n, \ldots\}$$

$$= \{kc \mod n \mid 0 \leq k \leq \frac{n}{c}\}$$

Is there a fundamental lemma of division modulo n?

$$cx \equiv_n cy \Rightarrow x \equiv_n y?$$

Is there a fundamental lemma of division modulo n?

$$cx \equiv_n cy \Rightarrow x \equiv_n y? \text{ NO!}$$

If $c=0 \mod n$, $cx \equiv_n cy$ for any x and y. Canceling the c is like dividing by zero.

Repaired fundamental lemma of division modulo n?

$$c \neq 0 \mod n, \text{ } cx \equiv_n cy \Rightarrow x \equiv_n y?$$

$$2*2 \equiv_6 2*5, \text{ but not } 2 \equiv_6 5.$$
$$6*3 \equiv_{10} 6*8, \text{ but not } 3 \equiv_{10} 8.$$
When can I divide by \(c \)?

Theorem: There are exactly \(n/GCD(c,n) \) distinct multiples of \(c \) modulo \(n \).

Corollary: If \(GCD(c,n) > 1 \), then the number of multiples of \(c \) is less than \(n \).

Corollary: If \(GCD(c,n) > 1 \) then you can’t always divide by \(c \).

Proof: There must exist distinct \(x, y < n \) such that \(c \cdot x = c \cdot y \) (but \(x \neq y \)).

Fundamental lemma of division modulo \(n \).

\(GCD(c,n)=1, \ ca \equiv_n cb \Rightarrow a \equiv_n b \)

\[
ab = ac \mod n \\
n \mid (ab-ac) \\
n \mid (ab-c) \\
n \mid b-c \quad \text{since } (a,n)=1 \\
b = c \mod n
\]

Corollary for general \(c \):

\(cx \equiv_n cy \Rightarrow x \equiv_{n/GCD(c,n)} y \)

\(cx \equiv_n cy \)

\(\Rightarrow cx \equiv_{n/(c,n)} cy \) and \((c, n/GCD(c,n)) = 1 \)

\(\Rightarrow x \equiv_{n/(c,n)} y \)

\(Z_6 = \{0, 1, 2, 3, 4, 5\} \)

\(Z_6^* = \{1, 5\} \)

Suppose \(GCD(x,n) =1 \) and \(GCD(y,n) =1 \)

Let \(z = xy \) and \(z' = (xy \mod n) \)

It is obvious that \(GCD(z,n) =1 \)

It requires a moment to convince ourselves that \(GCD(z',n) =1 \)
\[Z_n^* = \{x \in \mathbb{Z}_n \mid \text{GCD}(x,n) = 1\}\]

* is an associative, binary operator. In particular, \(Z_n^*\) is closed under *:
\[x, y \in Z_n^* \implies x * y \in Z_n^*.

Proof: Let \(z = xy\). Let \(z' = z \mod n\), \(z = z' + kn\).
Suppose there exists a prime \(p > 1\) \(p|z'\) and \(p|n\).
z is the sum of two multiples of \(p\), so \(p|z\).
p|z \implies p|x \text{ or } p|y.\) Contradiction of \(x, y \in Z_n^*\)

\[
\begin{array}{c|ccccc}
\times & 1 & 5 & 7 & 11 \\
1 & 1 & 5 & 7 & 11 \\
5 & 5 & 1 & 11 & 7 \\
7 & 7 & 11 & 1 & 5 \\
11 & 11 & 7 & 5 & 1 \\
\end{array}
\]

\[\begin{array}{ccc}
1 & 2 & 4 \\
2 & 4 & 1 \\
4 & 1 & 2 \\
\end{array}\]

The column permutation property is equivalent to the right cancellation property:
\[b * a = c * a \implies b = c\]

\[
\begin{array}{ccc}
1 & 2 & \alpha & 4 \\
2 & 4 & 1 & 3 \\
4 & 3 & 1 & 2 \\
\end{array}
\]

The row permutation property is equivalent to the left cancellation property:
\[a * b = a * c \implies b = c\]

\[
\begin{array}{cccc}
1 & 2 & 3 & 4 \\
2 & 4 & 1 & 3 \\
3 & 3 & 1 & 4 \\
4 & 4 & 3 & 2 \\
\end{array}
\]
Euler Phi Function

\[\Phi(n) = \text{size of } \mathbb{Z}_n^* \]

= number of 1 <= k < n that are relatively prime to n.

p prime \(\Rightarrow \mathbb{Z}_p^* = \{1,2,3,...,p-1\} \)
\(\Rightarrow \Phi(p) = p-1 \)

\[\Phi(pq) = (p-1)(q-1) \]
if p,q distinct primes

pq = # of numbers from 1 to pq
p = # of multiples of q up to pq
q = # of multiples of p up to pq
1 = # of multiple of both p and q up to pq

\[\Phi(pq) = pq - p - q + 1 = (p-1)(q-1) \]

The multiplicative inverse of \(a \in \mathbb{Z}_n^* \) is the unique \(b \in \mathbb{Z}_n^* \) such that \(a \cdot_n b \equiv_n 1 \). We denote this inverse by \("a^{-1}" \) or \("1/a" \).

The unique inverse of a must exist because the a row contains a permutation of the elements and hence contains a unique 1.

\[*_{12} \]
\begin{array}{cccc}
1 & 5 & 7 & 11 \\
5 & 1 & 7 & 11 \\
7 & 11 & 1 & 5 \\
11 & 1 & 7 & 5 \\
\end{array}

\[\mathbb{Z}_{12}^* = \{1,5,7,11\} \]
\(\phi(12) = 4 \)

Let's consider how we do arithmetic in \(\mathbb{Z}_n \) and in \(\mathbb{Z}_n^* \)

The additive inverse of \(a \in \mathbb{Z}_n \) is the unique \(b \in \mathbb{Z}_n \) such that \(a +_n b \equiv_n 0 \).
We denote this inverse by \("-a" \).

It is trivial to calculate:

\("-a" = (n-a) \).
\[Z_n = \{0, 1, 2, \ldots, n-1\} \]

\[Z_n^* = \{ x \in Z_n \mid \gcd(x, n) = 1 \} \]

Define \(+n \) and \(*n \):

\[a +n b = (a+b \mod n) \]
\[a *n b = (a*b \mod n) \]

\[c *n (a +n b) \equiv (c *n a) +n (c *n b) \]

\(<Z_n, +n>\):
1. Closed
2. Associative
3. 0 is identity
4. Additive Inverses
5. Cancellation
6. Commutative

\(<Z_n, *n>\):
1. Closed
2. Associative
3. 1 is identity
4. Multiplicative Inverses
5. Cancellation
6. Commutative

The multiplicative inverse of \(a \in Z_n^* \) is the unique \(b \in Z_n^* \)
such that \(a *n b \equiv_n 1 \). We denote this inverse by \("a^{-1}" \) or \("1/a" \).

Efficient algorithm to compute \(a^{-1} \) from \(a \) and \(n \).

Execute the Extended Euclid Algorithm on \(a \) and \(n \) (previous lecture). It will give two integers \(r \) and \(s \) such that:
\[ra + sn = (a,n) = 1 \]
Taking both sides \(\mod n \), we obtain:
\[rn \equiv_1 1 \]
Output \(r \), which is the inverse of \(a \).

Fundamental lemma of powers?

If \((a \equiv_n b) \) Then \(x^a \equiv_n x^b \)?

No!
\[(16 \equiv_{15} 1), \text{ but it is not the case that: } 2^1 \equiv_{15} 2^{16} \]

Calculate \(a^b \mod n \):
Except for \(b \), work in a reduced mod system to keep all intermediate results less than \(\log_2(n) + 1 \) bits long.

Phase I (Repeated Multiplication)
For \(\lfloor \log b \rfloor \) steps
- multiply largest so far by \(a \)
- \(a, a^2, a^3, \ldots \)

Phase II (Make \(a^b \) from bits and pieces)
- Expand \(n \) in binary to see how \(n \) is the sum powers of 2.
- Assemble \(a^b \) by multiplying together appropriate powers of \(a \).

Two names for the same set:

\[Z_n^* = Z_n^a \]
\[Z_n^a = \{ a *n x \mid x \in Z_n^* \}, a \in Z_n^* \]
Two products on the same set:

\[Z_n^a = \{ a \star_n x \mid x \in Z_n^\ast \}, a \in Z_n^\ast \]

\[\prod x \equiv_n \prod ax \quad [\text{as } x \text{ ranges over } Z_n^\ast] \]

\[\prod x \equiv_n \prod (a^{\text{size of } Z_n^\ast}) \quad [\text{Commutativity}] \]

\[1 = a^{\text{size of } Z_n^\ast} \quad [\text{Cancellation}] \]

\[a^{\phi(n)} = 1 \]

Euler’s Theorem

\[a \in Z_n^\ast, a^{\phi(n)} \equiv_n 1 \]

Fermat’s Little Theorem

\[p \text{ prime, } a \in Z_p^\ast \Rightarrow a^{p-1} \equiv_p 1 \]

Fundamental lemma of powers.

Suppose \(x \in Z_n^\ast \), and \(a, b, n \) are naturals.

If \(a \equiv_n b \) Then \(x^a \equiv_n x^b \)

Equivalently,

\[x^a \equiv_n x^b \mod \phi(n) \]

Defining negative powers.

Suppose \(x \in Z_n^\ast \), and \(a, n \) are naturals.

\(x^{-a} \) is defined to be the multiplicative inverse of \(x^a \)

\[x^{-a} = (x^a)^{-1} \]

Rule of integer exponents

Suppose \(x, y \in Z_n^\ast \), and \(a, b \) are integers.

\((xy)^{-1} \equiv_n x^{-1} y^{-1} \)

\[x^a x^b \equiv_n x^{a+b} \]

Lemma of integer powers.

Suppose \(x \in Z_n^\ast \), and \(a, b \) are integers.

If \(a \equiv_n b \) Then \(x^a \equiv_n x^b \)

Equivalently,

\[x^a \equiv_n x^b \mod \phi(n) \]
Quick raising to power.

\[
\begin{align*}
\langle Z_n, + \rangle & \quad \langle Z_n^*, * \rangle \\
1. & \text{Closed} & 1. & \text{Closed} \\
2. & \text{Associative} & 2. & \text{Associative} \\
3. & \text{0 is identity} & 3. & \text{1 is identity} \\
4. & \text{Additive Inverses} & 4. & \text{Multiplicative Inverses} \\
& \text{Fast + and -} & & \text{Fast * and /} \\
5. & \text{Cancellation} & 5. & \text{Cancellation} \\
6. & \text{Commutative} & 6. & \text{Commutative}
\end{align*}
\]

Euler Phi Function

\[
\Phi(n) = \text{size of } Z_n^*
\]

\[p \text{ prime } \Rightarrow Z_p^* = \{1, 2, 3, \ldots, p-1\} \]

\[
\Phi(p) = p-1
\]

\[
\phi(pq) = (p-1)(q-1)
\]

if \(p,q\) distinct primes

The RSA Cryptosystem

Rivest, Shamir, and Adelman (1978)

RSA is one of the most used cryptographic protocols on the net. Your browser uses it to establish a secure session with a site.

Pick secret, random \(k\)-bit primes: \(p,q\)

"Publish": \(n = pq\)

\[
\Phi(n) = \phi(p) \cdot \phi(q) = (p-1)(q-1)
\]

Pick random \(e \in Z_{\Phi(n)}^*\)

"Publish": \(e\)

Compute \(d = \text{inverse of } e \text{ in } Z_{\Phi(n)}^*\)

Hence, \(e \cdot d = 1 \mod \Phi(n)\)

"Private Key": \(d\)

\(p,q\) random primes, \(e\) random \(\in Z_{\Phi(n)}^*\)

\(n = pq\)

\(e \cdot d = 1 \mod \Phi(n)\)

\(\text{n,e is my public key. Use it to send a message to me.}\)

\(p,q\) prime, \(e\) random \(\in Z_{\Phi(n)}^*\)

\(n = pq\)

\(e \cdot d = 1 \mod \Phi(n)\)

\(\text{n,e}\)

\(m\)
\(n, e\)

\[p, q \text{ prime, } e \text{ random } \in \mathbb{Z}^*\]

\[n = pq\]

\[e \cdot d = 1 \mod \phi(n)\]

\[m^e \mod n\]