Great Theoretical I deas In Computer Science

Steven Rudich

CS 15-251

Spring 2005

Lecture 7

Feb 1, 2005

Carnegie Mellon University

Counting II: Recurring Problems And Correspondences

Correspondence Principle

If two finite sets can be placed into 1-1 onto correspondence, then they have the same size.

Choice Tree

A choice tree is a rooted, directed tree with an object called a "choice" associated with each edge and a label on each leaf.

A choice tree provides a "choice tree representation" of a set S, if

1) Each leaf label is in S2) No two leaf labels are the same

Product Rule

IF S has a choice tree representation with P₁ possibilities for the first choice, P₂ for the second, and so on,

THEN

there are P₁P₂P₃...P_n objects in S

Proof: The leaves of the choice tree are in 1-1 onto correspondence with the elements of S.

Product Rule

Suppose that all objects of a type S can be constructed by a sequence of choices with P_1 possibilities for the first choice, P_2 for the second, and so on.

1 F

Each sequence of choices constructs an object of type S

AND

2) No two different sequences create the same object

THEN

there are $P_1P_2P_3...P_n$ objects of type S.

Condition 2 of the product rule:

No two leaves have the same label.

Equivalently,

No object can be created in two different ways.

Reversibility Check: Given an arbitrary object in S, can we reverse engineer the choices that created it?

The two big mistakes people make in associating a choice tree with a set S are:

1) Creating objects not in S

2) Creating the same object two different ways

DEFENSIVE THINKING

Am I creating objects of the right type?

Can I reverse engineer my choice sequence from any given object?

The number of subsets of an n-element set is 2ⁿ

The number of permutations of n permutations of n distinct objects is n!

The number of subsets of size r that can be formed from an n-element set is:

$$\frac{\ln n!}{\ln r!} = \frac{n!}{r!(n-r)!}$$

Sometimes it is easiest to count something by counting its opposite.

Let's use our principles to extend our reasoning to different types of objects.

Counting Poker Hands...

52 Card Deck 5 card hands

4 possible suits:

- * * * *
- 13 possible ranks:
- 2,3,4,5,6,7,8,9,10,J,Q,K,A

Pair: set of two cards of the same rank

Straight: 5 cards of consecutive rank

Flush: set of 5 cards with the same suit

Straight Flush

A straight and a flush

4 of a kind

4 cards of the same rank

Full House

3 of one kind and 2 of another

Flush

• A flush, but not a straight

Straight

A straight, but not a flush

3 of a kind

3 of the same rank, but not a full house or 4 of a kind
 2 Pair

• 2 pairs, but not 4 of a kind or a full house

A Pair

Ranked Poker Hands

Straight Flush

9 choices for rank of lowest card at the start of the straight.4 possible suits for the flush.

$$9 \times 4 = 36$$

$$\frac{36}{(52)} = \frac{36}{2598960} = 1 \text{ in } 72,193.33...$$

4 Of A Kind

13 choices of rank.

48 choices for remaining card.

$$\frac{624}{2598960} = 1 \text{ in } 4165$$

Flush

4 choices of suit.

- = 5148
- 36 Straight Flushes
- = 5112

$$\frac{5112}{2598960} = 1 \text{ in } 508.4$$

Straight

- 9 choices of lowest rank in the straight.
- 4⁵ choices of suits to each card in sequence.
- =9216
- 36 Straight Flushes
- = 9180

$$\frac{9180}{2598960} = 1 \text{ in } 283.11$$

Storing Poker Hands How many bits per hand?

I want to store a 5 card poker hand using the smallest number of bits (space efficient).

Naïve scheme: 2 bits for suit,

4 bits for a rank,

and hence 6 bits per card

Total: 30 bits per hand

How can I do better?

Order the 2,598,560 Poker hands lexicographically [or in any fixed manner]

To store a hand all I need is to store its index of size $\log_2(2,598,560)$ = 22 bits.

•

22 Bits Is OPTIMAL

 $2^{21} = 2097152 < 2,598,560$

Thus there are more poker hands than there are 21-bit strings.

Hence, you can't have a 21-bit string for each hand.

Binary (Boolean) Choice Tree

A binary (Boolean) choice tree is a choice tree where each internal node has degree 2. Usually the choices will be labeled 0 and 1.

22 Bits Is OPTIMAL

 $2^{21} = 2097152 < 2,598,560$

A binary choice tree of depth 21 can have at most 2²1 leaves. Hence, there are not enough leaves for

Hence, you can't have a leaf for each hand.

An n-element set can be stored so that each element uses \log_2(n) \rightarrow bits.

Furthermore, any representation of the set will have some string of that length.

Information Counting Principle:

If each element of a set can be represented using k bits, the size of the set is bounded by 2^k

Information Counting Principle:

Let S be a set represented by a depth k binary choice tree, the size of the set is bounded by 2^k

ONGOING MEDITATION:

Let S be any set and T be a binary choice tree representation of S. We can think of each element of S being encoded by the binary sequences of choices that lead to its leaf. We can also start with a binary encoding of a set and make a corresponding binary choice tree.

Now, for something completely different...

How many ways to rearrange the letters in the word "SYSTEMS"?

SYSTEMS

1) 7 places to put the Y, 6 places to put the T, 5 places to put the E, 4 places to put the M, and the S's are forced.

$$7 \times 6 \times 5 \times 4 = 840$$

- 2) 7 choices of positions for the S's
 - 4 choices for the Y
 - 3 choices for the T
 - 2 choices for the E
 - 1 choice for the M

$$\frac{7!}{3!4!} \times 4 \times 3 \times 2 \times 1 = \frac{7!}{3!} = 840$$

SYSTEMS

3) Let's pretend that the S's are distinct: S₁YS₂TEMS₃

There are 7! permutations of S₁YS₂TEMS₃

But when we stop pretending we see that we have counted each arrangement of SYSTEMS 3! times, once for each of 3! rearrangements of $S_1S_2S_3$.

$$\frac{7!}{3!} = 840$$

Arrange n symbols r_1 of type 1, r_2 of type 2, ..., r_k of type k

$$\frac{\ln \ln n - r \ln n - r - r}{r \ln r} = \frac{\ln n!}{r! \ln n - r} \frac{\ln n - r}{r! \ln n - r} \frac{\ln n}{r! \ln n - r} = \frac{n!}{r! \ln n!}$$

CARNEGIEMELLON

$$\frac{14!}{2!3!2!} = 3,632,428,800$$

Remember:

The number of ways to arrange n symbols with r_1 of type 1, r_2 of type 2, ..., r_k of type k is:

n!

 $r_1!r_2!r_3!...r_k!$

Sequences with 20 G's and 4 /'s

GG/G//GGGGGGGGGGGGG/

represents the following division among the pirates: 2, 1, 0, 17, 0

In general, the ith pirate gets the number of G's after the i-1st / and before the ith /.

This gives a correspondence between divisions of the gold and sequences with 20 G's and 4 /'s.

How many different ways to divide up the loot? Sequences with 20 G's and 4 /'s

How many different ways can n distinct pirates divide k identical, indivisible bars of gold?

$$\binom{n+k-1}{n-1} = \binom{n+k-1}{k}$$

How many integer solutions to the following equations?

$$x_1 + x_2 + x_3 + x_4 + x_5 = 20$$

$$x_1, x_2, x_3, x_4, x_5 \ge 0$$

Think of X_k as being the number of gold bars that are allotted to pirate k.

24 \ 4

How many integer solutions to the following equations?

$$X_1 + X_2 + X_3 + ... + X_{n-1} + X_n = K$$

 $X_1, X_2, X_3, ..., X_{n-1}, X_n \ge 0$

$$\binom{n+k-1}{n-1} = \binom{n+k-1}{k}$$

Identical/Distinct Dice

Suppose that we roll seven dice.

How many different outcomes are there, if order matters?

67

What if order doesn't matter? (E.g., Yahtzee)

7

7 I dentical Dice

How many different outcomes?

Corresponds to 6 pirates and 7 bars of gold!

Let X_k be the number of dice showing k. The k^{th} pirate gets X_k gold bars.

$$\begin{pmatrix} 6+7-1\\ 7 \end{pmatrix}$$

Multisets

A <u>multiset</u> is a set of elements, each of which has a *multiplicity*.

The <u>size</u> of the multiset is the sum of the multiplicities of all the elements.

Example:

 $\{X, Y, Z\}$ with m(X)=0 m(Y)=3, m(Z)=2

Unary visualization: {Y, Y, Y, Z, Z}

Counting Multisets

There are $\binom{n+k-1}{n-1} = \binom{n+k-1}{k}$ ways to choose a multiset of size k from n types of elements

Back to the pirates

How many ways are there of choosing 20 pirates from a set of 5 pirates, with repetitions allowed?

$$\begin{pmatrix} 5+20-1 \\ 20 \end{pmatrix} = \begin{pmatrix} 24 \\ 20 \end{pmatrix} = \begin{pmatrix} 24 \\ 4 \end{pmatrix}$$

$$X_1 + X_2 + X_3 + ... + X_{n-1} + X_n = k$$

 $X_1, X_2, X_3, ..., X_{n-1}, X_n \ge 0$

has
$$\binom{n+k-1}{n-1} = \binom{n+k-1}{k}$$
 integer solutions.

POLYNOMIALS EXPRESS CHOICES AND OUTCOMES

Products of Sum = Sums of Products

$$(b^1 + b^2 + b^3)(t^1 + t^2) =$$

$$(b^1 + b^2 + b^3)(t^1 + t^2) = b^1t^1 +$$

$$(b^1 + b^2 + b^3)(t^1 + t^2) = b^1t^1 + b^1t^2 +$$

$$(b^1 + b^2 + b^3)(t^1 + t^2) = b^1t^1 + b^1t^2 + b^2t^1 +$$

$$(b^1 + b^2 + b^3)(t^1 + t^2) = b^1t^1 + b^1t^2 + b^2t^1 + b^2t^2 + b^2t^1 + b^2t^2$$

$$(b^1 + b^2 + b^3)(t^1 + t^2) = b^1t^1 + b^1t^2 + b^2t^1 + b^2t^2 + b^3t^1 +$$

$$(b^1 + b^2 + b^3)(t^1 + t^2) = b^1t^1 + b^1t^2 + b^2t^1 + b^2t^2 + b^3t^1 + b^3t^2$$

There is a correspondence between paths in a choice tree and the cross terms of the product of polynomials!

Choice tree for terms of (1+X)³

Combine like terms to get 1 + 3X + 3X² + X³

What is a closed form expression for c_k ?

$$(1 + X)^n = c_0 + c_1 X + c_2 X^2 + ... + c_n X^n$$

What is a closed form expression for c_n?

$$(1 + X)^n$$
 n times
= $(1 + X)(1 + X)(1 + X)(1 + X)...(1 + X)$

After multiplying things out, but *before* combining like terms, we get 2ⁿ cross terms, each corresponding to a path in the choice tree.

 c_k , the coefficient of X^k , is the number of paths with exactly k X's.

binomial expression

$$(1+X)^0 =$$
 1
 $(1+X)^1 =$ 1 + 1X
 $(1+X)^2 =$ 1 + 2X + 1X²
 $(1+X)^3 =$ 1 + 3X + 3X² + 1X³
 $(1+X)^4 =$ 1 + 4X + 6X² + 4X³ + 1X⁴

$$(X + Y)^n = \sum_{k=0}^{k=n} |n| X^k Y^{n-k}$$

the letters in the word SYSTEMS.

Multinomial Coefficients

$$\begin{cases} n \\ |r_1; r_2; ...; r_k| \end{cases} = \begin{cases} 0 \text{ if } r_1 + r_2 + ... + r_k \neq n \\ \frac{n!}{r_1! r_2! ... r_k!} \end{cases}$$

The Multinomial Formula

There is much, much more to be said about how polynomials encode counting questions!

References

Applied Combinatorics, by Alan Tucker