Great Theoretical Ideas In Computer Science

StevenRudich
CS 15-251
Spring 2005
Lecture 7
$\mathcal{F e} 6$ 1, 2005

Counting II:

$$
(\square+B+\infty)(B+\square)=?
$$

Correspondence Principle

If two finite sets can be
placed into 1-1 onto
correspondence, then
they fave the same size.

Choice Tree

A choice tree is a rooted, directed tree with an object called a "choice" associated with each edge and a labeloneachleaf.

A choice tree provides a "choice tree representation" of a set S, if

1) Each le af label is in S
2) No two leaf labels are the same

Product Rule

$I \mathcal{F} S$ has a choice tree representation with \mathcal{P}_{1} possibilities for the first choice, \mathcal{P}_{2} for the second, and so on,
$\mathcal{T H E N}$
there are $\mathcal{P}_{1} \mathcal{P}_{2} \mathcal{P}_{3} . . \mathcal{P}_{n}$ objects in S

Proof: The leaves of the choice tree are in 1-1 onto correspondence with the elements of S.

Product Rule

Suppose that all objects of a type S can be constructed by a sequence of choices with \mathscr{P}_{1} possibilities for the first choice, \mathcal{P}_{2} for the second, and so on.
$I \mathcal{F}$

1) Each sequence of choices constructs an object of type S $\mathcal{A N} \mathcal{D}$
2) No two different sequences create the same object
$\mathcal{T H E N}$
there are $\mathcal{P}_{1} \mathcal{P}_{2} \mathcal{P}_{3} \ldots \mathcal{P}_{n}$ objects of type \mathcal{S}.

Condition 2 of the product rule:

No two leaves have the same label.

Equivale nt [y,
\mathcal{N} o object can be created in two different ways.

Reversibility Check:

Given an arbitrary object in S,
can we reverse engineer the choices that created it?

The two big mistakes

 people make in associating a choice tree with abet S are:1) Creating objects not in S
2) Creating the same object two different ways

$\mathcal{D E F E N S}$ I YE $\mathcal{T H} I \mathcal{N X I N G G}$

$\mathfrak{A m}$ I creating objects of the right type?

Can I reverse engineer my choice sequence from any given object?

The number
of subsets of
anne Cement

$$
\text { set is } 2^{n}
$$

The number of

permutations of n distinct objects is n!

The number of subsets of size r that can be formed from ann-element set is:

$$
\frac{n!}{n!} \leq \frac{n!}{r!(n-r)!}
$$

Sometimes it is easiest to count something by counting its opposite.

Let's use our principles to extend our reasoning to different types of objects.

Counting Poker Hands...

52 Card Deck 5 card hands

4 possible suits:

13 possible ranks:
-2,3,4,5,6,7,8,9,10,J,Q,K,A
Pair: set of two cards of the same rank Straight: 5 cards of consecutive rank Flush: set of 5 cards with the same suit

Straight Flush

- A straight and a flush

4 of a kind

- 4 cards of the same rank

Full \mathcal{H} ous e

- 3 of one kind and 2 of another \mathcal{F} fus \mathfrak{K}
- A flush, but not a straight

Straight

- A straight, but not a flush

3 of a kind

- 3 of the same rank, but not a full house or 4 of a kind

2 Pair

- 2 pairs, but not 4 of a kind or a full house

A Pair

Straight Flush

9 choices for rank of lowest card at the start of the straight. 4 possible suits for the flush.

$$
9 \times 4=36
$$

$$
\frac{36}{\binom{52}{5}}=\frac{36}{2598960}=1 \text { in } 72,193.33 . .
$$

4 Of A Kind

13 choices of rank.
48 choices for remaining card.
$13 \times 48=624$
$\frac{624}{2598960}=1$ in 4165
2598960

\mathcal{F} lush \mathfrak{K}

4 choices of suit.
感
$=5148$

- 36 Straight Flushes
$=5112$
$\frac{5112}{2598960}=1$ in 508.4

Straight

9 choices of lowest rank in the straight.
4^{5} choices of suits to each card in sequence.
=9 216

- 36 Straight Flushes
= 9180
$\frac{9180}{2598960}=1$ in 283.11

I want to store a 5 card poker find using the smallest number of bits (space efficient).
$\mathcal{N a}$ Ne scheme: 2 bits for suit,
4 bits for a rank, and hence 6 bits per card
Total: $\quad 30$ bits per hand

How can I do better?

Order the 2,598,560 Poker hands lexicograpfically [or in any fixed manner]

To store a hand all I need is to store its inde x of size $\left\lceil\log _{2}(2,598,560)\right\rceil=226$ its.

Hand 0000000000000000000000 Hand 0000000000000000000001 Hand 0000000000000000000010

22 Bits Is OPIIMAL

$2^{21}=2097152<2,598,560$

Thus there are more poker fiands than there are 21-6it strings.

Hence, you can't have a 21-6it string for each fiand.

22 Bits Is OPIIMAL

$2^{21}=2097152<2,598,560$

A binary choice tree of depth 21 can have at most $2^{2} 1$ leaves. Hence, there are not enough leaves for

Hence, you can't have a le af for each hand.

Ann-element set can be stored so that each element uses $\left\lceil\log _{2}(n)\right\rceil$ bits.

Furthermore, any representation of the set will have some string of that length.

Information Counting Principle :

If each element of a set can be represented using K bits, the size of the set is bounded by 2^{k}

Information Counting Principle :

Let She abet represented by a depth
K binary choice tree, the size of the set is bounded by 2^{k}

S XS TEES

1) 7 places to put the $\mathcal{Y}, 6$ places to put the $\mathcal{T}, 5$ places to put the $\mathcal{E}, 4$ places to put the \mathcal{M}, and the S 's are forced.

$$
7 \times 6 \times 5 \times 4=840
$$

2) $\frac{1}{3}$ entices of positions for the S^{\prime} 's

4 choices for the \mathcal{Y}
3 choices for the \mathcal{T}
2 choices for the \mathcal{E}
1choice for the \mathcal{M}
$\frac{7!}{3!4!} \times 4 \times 3 \times 2 \times 1=\frac{7!}{3!}=840$

SYS TEMS

3) Let's pretend that the \mathcal{S} 's are distinct:

$$
\mathcal{S}_{1} \mathcal{Y S}_{2} \mathcal{T E M S} S_{3}
$$

There are 7!permutations of $\mathcal{S}_{1} \mathcal{Y} \mathcal{S}_{2} \mathcal{T E M S}_{3}$

But when we stop pretending we see that we fiave counted each arrangement of S $\mathcal{S S} \mathcal{T} \mathcal{E M S}$ 3! times, once for each of 3!rearrangements of $S_{1} S_{2} S_{3}$.

$$
\frac{7!}{3!}=840
$$

Arrange n symbols r_{1} of type 1, r_{2} of type 2,.., r_{κ} of type K
 $n!$

$$
r_{t}!r_{2}!r_{3}!\ldots r_{k}!
$$

CARNEGIEMELLON

$$
\frac{14!}{2!3!2!}=3,632,428,800
$$

Remember:

The number of ways to arrange n symbols with r_{1} of type 1, r_{2} of type 2,
\ldots, r_{k} of type k is:

$$
n!
$$

$$
r_{1}!r_{2}!r_{3}!\ldots r_{k}!
$$

5 distinct pirates want to divide 20 identical, indivisible bars of gold. How many different ways can they divide up the loot?

Sequences with 20 G's and $4 /$'s

$\mathcal{G} \mathcal{G} / \mathcal{G} / / \mathcal{G} /$

represents the following division among the pirates: $2,1,0,17,0$

Ingeneral, the $i^{\text {th }}$ pirate gets the number of \mathcal{G}^{\prime} 's after the $i-1^{\text {st }} /$ and before the $i^{\text {th }} /$.

This gives a correspondence between divisions of the gold and sequences with 20 g 's and $4 / \mathrm{s}$.

How many different ways to divide up the loot? Sequences with 20 G's and 4 /'s

$\mathcal{H o w}$ many different ways can n distinct pirates divide Kidentical, indivisible bars of gold?

$$
\binom{n+k-1}{n-1}=\binom{n+k-1}{k}
$$

How many integer solutions to the following equations?

$$
x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=20
$$

$$
x_{1}, x_{2}, x_{3}, x_{4}, x_{5} \geq 0
$$

Think of X_{k} as being the number of gold bars that are allotted to pirate K.

$$
\binom{24}{4}
$$

How many integer solutions to the following equations?

$$
\begin{gathered}
x_{1}+x_{2}+x_{3}+\ldots+x_{n-1}+x_{n}=k \\
x_{1}, x_{2}, x_{3}, \ldots, x_{n-1}, x_{n} \geq 0 \\
\binom{n+k-1}{n-1}=\binom{n+k-1}{k}
\end{gathered}
$$

Identical/Distinct Dice

Suppose that we roll seven dice.

How many different outcomes are there, if order matters?

$$
6^{7}
$$

What if order doesn't matter?
(E.g., YaKtzee)

$$
\binom{12}{7}
$$

7 Identical Dice

How many different outcomes?
Corresponds to 6 pirates and 7 bars of gold!

Let X_{k} be the number of dice showing k. The $K^{t h}$ pirate gets X_{k} gold bars.

$$
\binom{6+7-1}{7}
$$

Multisets

\mathfrak{A} multiset is a set of elements, each of which has a multiplicity.

The size of the multise t is the sum of the multiplicities of all the elements.

Example:
$\{X, Y, Z \mathbb{Z}$ with $m(X)=0 \quad m(Y)=3, m(Z)=2$
Unary visualization: $\{\mathcal{Y}, \mathcal{Y}, \mathcal{Y}, \mathcal{Z}, \mathcal{Z}\}$

Counting Multise ts

There are $\left.\begin{array}{c}\mathrm{n}+\mathrm{k}-1 \\ n-1\end{array}\right)=\binom{\mathrm{n}+\mathrm{k}-1}{k}$ ways
to choose a multiset of size K from n types of elements

Back to the pirates

How many ways are there of choosing
20 pirates from a set of 5 pirates, with repe titions allowed?

$$
\binom{5+20-1}{20}=\binom{24}{20}=\binom{24}{4}
$$

$$
x_{1}+x_{2}+x_{3}+\ldots+x_{n-1}+x_{n}=\kappa
$$

$$
x_{1}, x_{2}, x_{3}, \ldots, x_{n-1}, x_{n} \geq 0
$$

has $\binom{\mathrm{n}+\mathrm{k}-1}{n-1}=\binom{\mathrm{n}+\mathrm{k}-1}{k}$ integer solutions.

HO I CES ANOD O UITCOMES
0 HO ICES AND O UICOMES

$$
(-8+8)(3)=
$$

$-6]+8\}$

$$
\left(6^{1}+b^{2}+b^{3}\right)\left(t^{1}+t^{2}\right)=
$$

$\left(b^{1}+b^{2}+b^{3}\right)\left(t^{1}+t^{2}\right)=b^{1} t^{1}+$

$\left(b^{1}+b^{2}+b^{3}\right)\left(t^{1}+t^{2}\right)=\sigma^{1} t^{1}+b^{1} t^{2}+$

$$
\left(6^{1}+b^{2}+b^{3}\right)\left(t^{1}+t^{2}\right)=\sigma^{1} t^{1}+6^{1} t^{2}+b^{2} t^{1}+
$$

$$
\begin{gathered}
\left(b^{1}+6^{2}+6^{3}\right)\left(t^{1}+t^{2}\right)=6^{1} t^{1}+b^{1} t^{2}+b^{2} t^{1}+b^{2} t^{2} \\
+
\end{gathered}
$$

$$
\begin{gathered}
\left(6^{1}+b^{2}+b^{3}\right)\left(t^{1}+t^{2}\right)=6^{1} t^{1}+b^{1} t^{2}+b^{2} t^{1}+b^{2} t^{2} \\
+b^{3} t^{1}+
\end{gathered}
$$

$$
\begin{gathered}
\left(b^{1}+b^{2}+b^{3}\right)\left(t^{1}+t^{2}\right)=b^{1} t^{1}+b^{1} t^{2}+b^{2} t^{1}+b^{2} t^{2} \\
+b^{3} t^{1}+b^{3} t^{2}
\end{gathered}
$$

There is a correspondence between paths in a choice tree and the cross terms of the product of polynomials!

Choice tree for terms of $(1+X)^{3}$

Combine like terms to get $1+3 x+3 x^{2}+x^{3}$

What is a closed form expression

$$
\text { for } c_{k} \text { ? }
$$

$(1+X)^{n}=c_{0}+c_{1} X+c_{2} X^{2}+\ldots+c_{n} X^{n}$

What is a closed form expression

$$
\text { for } c_{n} \text { ? }
$$

$(1+x)^{n}$ n times
$=(1+x)(1+x)(1+x)(1+x) \ldots(1+x)$

After multiplying things out, Gut before combining like terms, we get 2^{n} cross terms, each corresponding to a path in the choice tree.
$c_{k^{\prime}}$ the coefficient of x^{k}, is the number of paths with exactly κx 's.

$$
c_{K}=\frac{\pi}{k}
$$

The Binomial Formula

Ginomial
expression

The Binomial Formula

$$
\begin{array}{lc}
(1+X)^{0}= & 1 \\
(1+X)^{1}= & 1+1 X \\
(1+X)^{2}= & 1+2 x+1 x^{2} \\
(1+X)^{3}= & 1+3 x+3 x^{2}+1 X^{3} \\
(1+X)^{4}= & 1+4 X+6 x^{2}+4 x^{3}+1 X^{4}
\end{array}
$$

The Binomial Formula

The Binomial Formula
$(X+Y)^{n}=\sum_{k=0}^{k=n} \mathbb{K N S}^{n} \mathcal{X}^{n-k}$

What is the coefficient of EMS TY in the expansion of $(\mathcal{E}+\mathfrak{M}+\mathcal{S}+\mathcal{T}+\mathcal{Y})^{5}$?

What is the coefficient of EMS ${ }^{3} \mathcal{T} \mathcal{Y}$ in the expansion of $(\mathcal{E}+\mathcal{M}+\mathcal{S}+\mathcal{T}+\mathcal{Y})^{7}$?

The number of ways to rearrange the letters in the word SYS TEMS.

What is the coefficient of $\mathcal{B A}^{3} \mathcal{N}^{2}$ in the expansion of $(\mathcal{B}+\mathcal{A}+\mathcal{N})^{6} ?$

The number of ways to rearrange the letters in the word BANVANA.

What is the
coefficient of $X_{1}^{\tau_{1}} X_{2}^{\tau_{2}} X_{3}^{\tau_{3}} \ldots X_{k}^{\tau_{k}}$ in the expansion of
$\left(x_{1}+x_{2}+x_{3}+\ldots+x_{k}\right)^{n}$?
$n!$

$$
r_{1}!r_{2}!r_{3}!\ldots r_{k}!
$$

$$
\begin{aligned}
& \text { Multinomial Coefficients } \\
& \text { ET; } n r_{2} ; \ldots ; r_{k}=\left\{\begin{array}{l}
0 \text { if } r_{1}+r_{2}+\ldots+r_{k} \neq n \\
\frac{n!}{r_{1}!r_{2}!\ldots r_{k}!}
\end{array}\right. \\
& S_{k} n=k \cdot \frac{k}{k}
\end{aligned}
$$

The Multinomial Formula

$$
\begin{aligned}
& \left(X_{1}+X_{2}+\ldots+X_{k}\right)^{n} \\
& =\sum_{\substack{r_{1} r_{2}, \ldots, r_{k} \\
\sum_{r},=n}}\binom{n}{r_{1} ; r_{2} ; \ldots ; r_{\kappa}} X_{1}^{r_{1}} X_{2}^{r_{2}} X_{3}^{r_{3}} \ldots X_{k}^{r_{k}}
\end{aligned}
$$

There is much,

 much more to be said about how polynomialsencode counting questions!

References

Applie d Combinatorics, by Alan Tucker

