

If I have 14 teeth on the top and 12 teeth on the bottom, how many teeth do I have in all?

Corollary (by induction)
Let
$$A_1, A_2, A_3, ..., A_n$$
 be disjoint, finite sets.

$$\left| \bigcup_{i=1}^n A_i \right| = \sum_{i=1}^n |A_i|$$

$$S = \text{Set of all outcomes where the} \\ \text{dice show different values.} \\ |S| = ? \\ \text{A}_i = \text{set of outcomes where the black} \\ \text{die says i and the white die says} \\ \text{something else.} \\ |S| = \left| \bigcup_{i=1}^{6} A_i \right| = \sum_{i=1}^{6} |A_i| = \sum_{i=1}^{6} 5 = 30 \\ \text{die says} = \left| \sum_{i=1}^{6} A_i \right| = \sum_{i=1}^{6} |A_i| = \sum_{i=1}^{6} 5 = 30 \\ \text{die says} = \left| \sum_{i=1}^{6} A_i \right| = \sum_{i=1}^{6} |A_i| = \sum_{i=1}^{6} 5 = 30 \\ \text{die says} = \left| \sum_{i=1}^{6} A_i \right| = \sum_{i=1}^{6} |A_i| = \sum_{i=1}^{6} 5 = 30 \\ \text{die says} = \left| \sum_{i=1}^{6} A_i \right| = \left| \sum_{i=1}^{6} A_i \right| = \left| \sum_{i=1}^{6} B_i \right|$$

S = Set of all outcomes where the dice show different values. |S| = ?T = set of outcomes where dice agree. $|S \cup T| = \#$ of outcomes = 36 |S| + |T| = 36 |T| = 6|S| = 36 - 6 = 30

S = Set of all outcomes where the black die shows a smaller number than the white die. <math>|S| = ?

 $A_i \equiv$ set of outcomes where the black die says i and the white die says something larger.

 $S = A_1 \cup A_2 \cup A_3 \cup A_4 \cup A_5 \cup A_6$ |S| = 5 + 4 + 3 + 2 + 1 + 0 = 15

S = Set of all outcomes where the black die shows a smaller number than the white die. |S| = ? L = set of all outcomes where the black die shows a larger number than the white die. |S| + |L| = 30It is clear by symmetry that |S| = |L|. Therefore |S| = 15

Pinning down the idea of symmetry by exhibiting a correspondence.

Let's put each outcome in S in correspondence with an outcome in L by swapping the color of the dice.

Each outcome in S gets matched with exactly one outcome in L, with none left over.

Thus: | S |= | L |.

Correspondence Principle

If two finite sets can be placed into 1-1 onto correspondence, then they have the same size.

Correspondence Principle

If two finite sets can be placed into 1-1 onto correspondence, then they have the same size.

	How many n- es are there	
000000 000001 000010	$\begin{array}{c} \leftarrow \rightarrow \\ \leftarrow \rightarrow \\ \leftarrow \rightarrow \end{array}$	0 1 2
000011	<-> <->	3 2 ⁿ -1
	< → sequences	Z''-1

a b c d e	ormed		the ele ment s		of a 5
	а	b	С	d	е
	0	1	1	0	1

Each subset corresponds to a 5-bit sequence (using the "take it or leave it" code)

$$S = \{a_{1}, a_{2}, a_{3}, \dots, a_{n}\}$$

$$b = b_{1}b_{2}b_{3}\dots b_{n}$$

$$\boxed{a_{1} \quad a_{2} \quad a_{3} \quad \dots \quad a_{n}}$$

$$b_{1} \quad b_{2} \quad b_{3} \quad \dots \quad b_{n}$$

$$f(b) = \{a_{i} \mid b_{i}=1 \}$$

	a ₁	a ₂	a ₃		a _n	
	b ₁	b ₂	b ₃		b _n	
	f(k	D) = {	[a _i	b _i =1	}	
and b Henc	o' have a e, f(b)	a positio	oniatv qualto:	nary se vhich th f(b') be	ey diff	er.

disagree on element a_i.

a<u>n</u> a₂ a_1 a_3 ... b_2 b_3 b₁ b_n ...

$$f(b) = \{a_i | b_i=1 \}$$

f is onto: Let S be a subset of $\{a_1,...,a_n\}$. Let $b_k = 1$ if a_k in S; $b_k = 0$ otherwise. $f(b_1b_2...b_n) = S$.

f is 1-1 if and only if $\forall x, y \in A, x \neq y \Rightarrow f(x) \neq f(y)$

f is onto if and only if $\forall z \in B \exists x \in A f(x) = z$ Let f:A® B be a function from a set A to a set B. f is a 1 to 1 correspondence iff $\forall z \in B \exists$ exactly one x2A s.t. f(x)=z f is a k to 1 correspondence iff $\forall z \in B \exists$ exactly k x2A s.t. f(x)=z

A restaurant has a menu with 5 appetizers, 6 entrees, 3 salads, and 7 desserts.

How many items on the menu? $\cdot 5 + 6 + 3 + 7 = 21$

How many ways to choose a complete meal?

• 5 * 6 * 3 * 7 = 630

A restaurant has a menu with 5 appetizers, 6 entrees, 3 salads, and 7 desserts.

How many ways to order a meal if I might not have some of the courses?

• 6 * 7 * 4 * 8 = 1344

Hobson's restaurant has only 1 appetizer, 1 entree, 1 salad, and 1 dessert.

 2^4 ways to order a meal if I might not have some of the courses.

Same as number of subsets of the set {Appetizer, Entrée, Salad, Dessert}

Product Rule

IFS has a choice tree representation with P_1 possibilities for the first choice, P_2 for the second, and so on,

THEN

there are $P_1P_2P_3...P_n$ objects in S

Proof: The leaves of the choice tree are in 1-1 onto correspondence with the elements of S. $\ensuremath{\mathsf{S}}$

Product Rule

Suppose that all objects of a type S can be constructed by a sequence of choices with P_1 possibilities for the first choice, P_2 for the second, and so on.

ΙF

1) Each sequence of choices constructs an object of type S

AND

2) No two different sequences create the same object

THEN

there are $P_1P_2P_3..P_n$ objects of type S.

How many different orderings of deck with 52 cards? What type of object are we making? Ordering of a deck Construct an ordering of a deck by a sequence of 52 choices: 52 possible choices for the first card; 51 possible choices for the second card; 50 possible choices for the third card; ... 1 possible choice for the 52^{cond} card.

A <u>permutation</u> or <u>arrangement</u> of n objects is an ordering of the objects.

The number of permutations of n distinct objects is n!

A formalization

Let $S(x) \colon \Sigma^{\star} \to \{ True, \, False \}$ be any predicate.

We can associate S with the set: OBJECTS_S = {x $\in \Sigma^* | S(x)$ } the "object space" S (or objects of type S)

 $\begin{array}{l} \mbox{When OBJECTS}_{\rm S} \mbox{ is finite, let us define} \\ \mbox{\#OBJECTS}_{\rm S} = \mbox{the size of OBJECTS}_{\rm S} \\ \mbox{In fact, define } \mbox{\#S as } \mbox{\#OBJECTS}_{\rm S} \end{array}$

Object property Q on object space S

Consider Q(x): OBJECTS $_{S} \rightarrow \{\text{True, False}\}$

 $\begin{array}{l} \text{Define}: Q(x): \text{OBJECTS}_S \rightarrow \{\text{True, False}\} \\ \text{As Input}(x); \text{ return NOT } Q(x) \end{array}$

Proposition: #Q = #S - #(: Q)

If 10 horses race, how many orderings of the top three finishers are there?

The number of ways of ordering, permuting, or arranging r out of n objects.

n choices for first place, n-1 choices for second place, \ldots

=

Ordered Versus Unordered

From a deck of 52 cards how many ordered pairs can be formed? • 52 * 51

How many unordered pairs?

 52*51 / 2 ← divide by overcount Each unordered pair is listed twice on a list of the ordered pairs, but we consider the ordered pairs to be the same.

ordered 5 card sequences can be formed?

• 52 * 51 * 50 * 49 * 48

How many orderings of 5 cards?

• 5!

How many unordered 5 card hands? pairs?

• 52*51*50*49*48 / 5! = 2,598,960

How many 8 bit sequences have 2 0's and 6 1's?

Tempting, but incorrect:

8 ways to place first 0 times 7 ways to place second 0

Violates condition 2 of product rule! Choosing position i for the first 0 and then position j for the second 0 gives the same sequence as choosing position j for the first 0 and position i for the second. How many 8 bit sequences have 2 O's and 6 1's?

1) Choose the set of 2 positions to put the 0's. The 1's are forced.

2) Choose the set of 6 positions to put the 1's. The 0's are forced.

How many hands have at least 3 aces? How many hands have exactly 3 aces? $\begin{pmatrix}
4 \\
3
\end{pmatrix} = 4 \text{ ways of picking 3 of the 4 aces.} \\
\begin{pmatrix}
48 \\
2
\end{pmatrix} = 1128 \text{ ways of picking 2 cards non - ace cards.} \\
4 \times 1128 = 4512 \\
\text{How many hands have exactly 4 aces?} \\
\begin{pmatrix}
4 \\
4
\end{pmatrix} = 1 \text{ way of picking 4 of the 4 aces.} \\
48 \text{ ways of picking one of the remainingcards} \\
4512 + 48 = 4560
\end{cases}$

		sequences of the same han
4×1176=4704		
A ♣ A♦	A♥	A♠K♦
A ♣ A♦	A 🛦	A♥ K♦
A♣ A♠	A♥	A♦ K♦
A ▲ A◆	Δ	<u> </u>

A♣ K ♦

Choose 3 of 4 aces
 Choose 2 non-ace cards

A♣ Q♠ A♦ A♥ K♦

Sleuth reasons:

A♠ A♦ A♥

The aces came from the first choice and the non-aces came from the second choice.

1) Choose 4 of 4 aces 2) Choose 1 non-ace

A♣ A♠ A♦ A♥ K♦

Sleuth reasons:

The aces came from the first choice and the non-ace came from the second choice.