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Counting I: One To One 
Correspondence and Choice Trees 

Carnegie Mellon UniversityJan 27, 2005Lecture 6
CS 15-251       Spring 2005Steven Rudich

Great Theoretical Ideas In Computer Science

How many seats in this 
auditorium?

Hint: 
Count without counting!

If I have 14 teeth on the top and 
12 teeth on the bottom, how many 

teethdo I have in all?
Addition Rule

Let A and B be two disjoint finite sets.

The size of A∪B is the sum of 
the size of A and the size of B.

A B A B∪ = +

Corollary (by induction)

Let A1, A2, A3, …, An be disjoint, finite 
sets.

A Ai i
i=1

n

i

n

=

= ∑
1

∪

Suppose I roll a 
white die and a black die.
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S ≡ Set of all outcomes where the 
dice show different values.

S = ?
Ai ≡ set of outcomes where the black 
die says i and the white die says 
something else.

S A A 5 30i i
i=1 i=1

= = = =
=

∑ ∑
i 1

6 6 6∪

S ≡ Set of all outcomes where the 
dice show different values.

S = ?

T ≡ set of outcomes where dice agree.

S T #of outcomes 36
S T 36 T 6

S 36 6 30

∪ = =

+ = =

= − =

S ≡ Set of all outcomes where the 
black die shows a smaller number 

than the white die.       S = ?

Ai ≡ set of outcomes where the black 
die says i and the white die says 
something larger.

S A A A A A A
S 5 4 3 2 1 0 15

1 2 3 4 5 6= ∪ ∪ ∪ ∪ ∪

= + + + + + =

S ≡ Set of all outcomes where the 
black die shows a smaller number 

than the white die.      S = ?

L ≡ set of all outcomes where the black 
die shows a larger number than the 
white die.

S + L = 30 
It is clear by symmetry that S = L.

Therefore S = 15

It is clear by symmetry that S = L.
Pinning down the idea of symmetry by 

exhibiting a correspondence.

Let’s put each outcome in S in 
correspondence with an outcome in L 
by swapping the color of the dice.

S L
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Let’s put each outcome in S in 
correspondence with an outcome in L 
by swapping the color of the dice.

Pinning down the idea of symmetry by 
exhibiting a correspondence.

Each outcome in S gets matched with 
exactly one outcome in L, with none left 
over. 

Thus: S = L.

Let f:A→B 
be a function from a set A to a set B.

f is 1-1 if and only if
∀x,y∈A,  x ≠ y ⇒ f(x) ≠ f(y)

f is onto if and only if
∀z∈B ∃x∈A f(x) = z

Let f:A→B 
be a function from a set A to a set B.

f is 1-1 if and only if
∀x,y∈A,  x ≠ y ⇒ f(x) ≠ f(y)

f is onto if and only if
∀z∈B ∃x∈A f(x) = z

For Every

There 
Exists

Let’s restrict our attention to 
finite sets.

A B

∃ 1-1 f:A→B ⇒  A ≤ B

A B
∃ onto f:A→B ⇒  A ≥ B

A B
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∃ 1-1 onto f:A→B ⇒  A = B

A B

1-1 Onto Correspondence
(just “correspondence” for short)

A B

Correspondence Principle

If two finite sets can be 
placed into 1-1 onto 

correspondence, then they 
have the same size.

Correspondence Principle

If two finite sets can be placed into 1-1 onto 
correspondence, then they have the same 
size.

It’s one of the 
most 

important 
mathematical 
ideas of all 

time!

Question: How many n-bit 
sequences are there?

000000 ßà 0
000001 ßà 1
000010 ßà 2
000011 ßà 3

...
1…11111 ßà 2n-1

2n sequences

S = {a,b,c,d,e} has many subsets.

{a}, {a,b}, {a,d,e}, {a,b,c,d,e}, 
{e}, Ø, …

The empty set is a set with 
all the rights and privileges 

pertaining thereto.
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Question: How many subsets can be 
formed from the elements of a 5-

element set?

10110
edcba

{b   c            e}

1 means “TAKE IT”
0 means “LEAVE IT”

Question: How many subsets can be 
formed from the elements of a 5-

element set?

10110
edcba

Each subset corresponds to a  
5-bit sequence  (using the 
“take it or leave it” code)

S = {a1, a2, a3,…, an}
b = b1b2b3…bn

bn…b3b2b1

an…a3a2a1

f(b) = {ai | bi=1 }
f is 1-1: Any two distinct binary sequences b 
and b’ have a position i at which they differ. 
Hence, f(b) is not equal to f(b’) because they 
disagree on element ai.

bn…b3b2b1

an…a3a2a1

f(b) = {ai | bi=1 }

f is onto: Let S be a subset of 
{a1,…,an}. Let bk = 1 if ak in S; bk = 0 
otherwise. f(b1b2…bn) = S.

bn…b3b2b1

an…a3a2a1

f(b) = {ai | bi=1 }

The number of 
subsets of an 
n-element set 

is 2n.
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Let f:A→B 
be a function from a set A to a set B.

f is 1-1 if and only if
∀x,y∈A,  x ≠ y ⇒ f(x) ≠ f(y)

f is onto if and only if
∀z∈B ∃x∈A f(x) = z

Let f:A→B 
be a function from a set A to a set B.

f is a 1 to 1 correspondence iff
∀z∈B ∃ exactly one x2A s.t. f(x)=z

f is a k to 1 correspondence iff
∀z∈B ∃ exactly k x2A s.t. f(x)=z

To count the number of horses in 
a barn, we count the number 
hoofs and then divide by 4.

If Finite set A has 
a k to 1 

correspondence 
to finite set B, 
then #B = #A/k

I own 3 beanies and 2 ties. How 
many different ways can I dress 

up in a beanie and a tie?
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A restaurant has a menu with
5 appetizers, 6 entrees, 3 salads, 

and 7 desserts.

How many items on the menu?
• 5 + 6 + 3 + 7 = 21

How many ways to choose a complete 
meal?
• 5 * 6 * 3 * 7   = 630

A restaurant has a menu with 
5 appetizers, 6 entrees, 3 salads, 

and 7 desserts.

How many ways to order a meal if I 
might not have some of the courses?

• 6 * 7 * 4 * 8 = 1344

Hobson’s restaurant has only 1 
appetizer, 1 entree, 1 salad, and 1 

dessert.

24 ways to order a meal if I might not 
have some of the courses.

Same as number of subsets of the set
{Appetizer, Entrée, Salad, Dessert}

Leaf Counting Lemma

Let T be a depth n tree when each node 
at depth 0 ≤ i ≤ n-1 has Pi+1 children. 
The number of leaves of T is given by:

P1P1P2…Pn

0 1 0 10 1 0 1

0 1 0 1

0 1

Choice Tree 
for 2n n-bit sequences

We can use a “choice tree” to 
represent the construction of 
objects of the desired type.

0 1 0 10 1 0 1

0 1 0 1

0 1

2n n-bit sequences

000 001 010 011 100 101 110 111

Label each leaf with the object constructed 
by the choices along the path to the leaf.
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0 1 0 10 1 0 1

0 1 0 1

0 1

2 choices for first bit
X 2 choices for second bit
X 2 choices for third bit

…
X 2 choices for the nth

A choice tree is a rooted, directed 
tree with an object called a “choice” 

associated with each edge and a 
label on each leaf.

Choice Tree

A choice tree  provides a “choice tree 
representation” of a set S, if

1) Each leaf label is in S
2)No two leaf labels are the same

We will now combine 
the correspondence 
principle with the 

leaf counting lemma
to make a powerful 
counting rule for 

choice tree 
representation.

Product Rule

IF S has a choice tree representation with 
P1 possibilities for the first choice, 
P2 for the second, and so on,

THEN
there are P1P2P3…Pn objects in S

Proof: The leaves of the choice tree are in 1-1 onto 
correspondence with the elements of S.

Product Rule
Suppose that all objects of a type S can be 
constructed by a sequence of choices with P 1
possibilities for the first choice, P2 for the 
second, and so on. 
IF

1) Each sequence of choices constructs an
object of type S

AND
2) No two different sequences create the

same object
THEN

there are P1P2P3…Pn objects of type S.



9

How many different orderings of 
deck with 52 cards?

What type of object are we making?
• Ordering of a deck

Construct an ordering of a deck by a 
sequence of 52 choices:

52 possible choices for the first card;
51 possible choices for the second card;
50 possible choices for the third card;

…
1 possible choice for the 52cond card.

How many different orderings of 
deck with 52 cards?

By the product rule:

52 * 51 * 50 * … * 3 * 2 * 1 = 52!

52 “factorial” orderings

A permutation or arrangement of n 
objects is an ordering of the objects. 

The number of 
permutations of n 

distinct objects is n!

How many sequences of 7 
letters are there?

267

How many sequences of 7 
letters contain at least two 

of the same letter?

267  - 26*25*24*23*22*21*20

Sometimes it is easiest 
to count the number of 
objects with property Q, 
by counting the number 
of objects that do not 
have property Q.



10

A formalization

Let S(x): Σ* → {True, False} be any 
predicate. 

We can associate S with the set:
OBJECTSS = {x ∈ Σ* | S(x) }

the “object space” S (or objects of type S)

When OBJECTSS is finite, let us define
#OBJECTSS = the size of OBJECTSS

In fact, define #S as #OBJECTSS

Object property Q on object space S 

Consider Q(x): OBJECTSS → {True, False}

Define :Q(x): OBJECTSS → {True, False}
As Input(x); return NOT Q(x) 

Proposition: #Q = #S - #(:Q)

How many of our objects 
have property Q in object 
space S? 

#Q
= #OBJECTSS - #(:Q)

Helpful Advice:

In logic, it can be useful to 
represent a statement in the 

contrapositive.

In counting, it can be useful to 
represent a set in terms of its 

complement.

If 10 horses race, how many 
orderings of the top three 

finishers are there?

10 * 9 * 8 = 720

The number of ways of  ordering, 
permuting, or arranging r out of n 

objects.

n choices for first place, n-1 choices 
for second place, . . . 

n * (n-1) * (n-2) *…* (n-(r-1))

n!
(n -r)!=
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Ordered Versus Unordered

From a deck of 52 cards how many 
ordered pairs can be formed?
• 52 * 51

How many unordered pairs?
• 52*51 / 2  ß divide by overcount

Each unordered pair is listed twice on a 
list of the ordered pairs, but we 
consider the ordered pairs to be the 
same.

Ordered Versus Unordered

From a deck of 52 cards how many 
ordered pairs can be formed?
• 52 * 51

How many unordered pairs?
• 52*51 / 2  ß divide by overcount
We have a 2 to 1 map from ordered pairs 

to unordered pairs. Hence: the 
#unordered pairs = (#ordered pairs)/2

Ordered Versus Unordered
From a deck of 52 cards how many 
ordered 5 card sequences can be 
formed?
• 52 * 51 * 50 * 49 * 48

How many orderings of 5 cards?
• 5!

How many unordered 5 card hands?
pairs?
• 52*51*50*49*48 / 5!  = 2,598,960

A combination or choice of r out of n 
objects is an (unordered) set of r of 

the n objects.
The number of r combinations of n 
objects:

n!
r!(n -r)!

n
r

= F
HG
I
KJ

n choose r

The number of subsets of 
size r that can be formed 
from an n-element set is:

n
r

n!
r!(n - r)!

F
HG
I
KJ =
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How many 8 bit sequences 
have 2 0’s and 6 1’s?

Tempting, but incorrect:
8 ways to place first 0 times
7 ways to place second 0

Violates condition 2 of product rule!
Choosing position i for the first 0 and 
then position j for the second 0 gives 
the same sequence as choosing position 
j for the first 0 and position i for the 
second.

How many 8 bit sequences 
have 2 0’s and 6 1’s?

1) Choose the set of 2 positions to put 
the 0’s. The 1’s are forced.

2) Choose the set of 6 positions to put 
the 1’s. The 0’s are forced.

8
2

1
8
2

F
HG

I
KJ × =

F
HG
I
KJ

8
6

1 8
6

F
HG

I
KJ × =

F
HG

I
KJ

Symmetry in the formula:

n
r

n!
r!(n -r)!

n
n r

F
HG
I
KJ = =

−
F
HG

I
KJ

How many hands have at least 3 
aces?

4
4 ways of picking 3 of the 4 aces.

3

49
1176 ways of picking 2 cards from the remaining 49 cards.

2

4 1176 =4704


=

 


=
 

×

How many hands have at least 3 aces?

How many hands have exactly 3 aces?

How many hands have exactly 4 aces?

4512 + 48 = 4560

4
4 ways of picking 3 of the 4 aces.

3

48
1128 ways of picking 2 cards non ace cards.

2

4 1128 4512


=

 


= −
 

× =

4
1 way of picking 4 of the 4 aces.

4

48 ways of picking one of the remaining cards


=

 

4704 ≠ 4560
At least one of the 

two counting 
arguments is not 

correct.
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Four different sequences of 
choices produce the same hand

A♣ A♦ A♥ A♠ K♦

A♣ A♦ A ♠ A♥ K♦

A♣ A♠ A♥ A♦ K♦

A♠ A♦ A♥ A♣ K♦

4
4 ways of picking 3 of the 4 aces.

3

49
1176 ways of picking 2 cards from the remaining 49 cards.

2

4 1176 =4704


= 
 =

 

×

Is the other 
argument correct? 

How do I avoid 
fallacious 

reasoning?

The Sleuth’s Criterion

Condition (2) of the product rule:

For any object it should be possible to 
reconstruct the sequence of choices 
which lead to it.

Sleuth can’t determine which cards 
came from which choice.

A♣ A♦ A♥ A♠ K♦

A♣ A♦ A ♠ A♥ K♦

A♣ A♠ A♥ A♦ K♦

A♠ A♦ A♥ A♣ K♦

1) Choose 3 of 4 aces
2) Choose 2 of the remaining cards

A♣ A♦ A♥A♠ K♦

Is the other 
argument correct? 

How do I avoid 
fallacious 

reasoning? Sleuth reasons:

The aces came from the first choice 
and the non-aces came from the second 
choice.

1) Choose 3 of 4 aces
2) Choose 2 non-ace cards

A♣ Q♠ A♦ A♥ K♦
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Sleuth reasons:

The aces came from the first choice 
and the non-ace came from the second 
choice.

1) Choose 4 of 4 aces
2) Choose 1 non-ace 

A♣ A♠ A♦ A♥ K♦


