

If I have 14 teeth on the top and 12 teeth on the Gottom, how many teeth do I have in all?

Corollary (by induction)

Let $\mathcal{A}_{1}, \mathscr{A}_{2}, \mathcal{A}_{3}, \ldots, \mathcal{A}_{n}$ be disjoint, finite sets.

$$
\left|\bigcup_{i=1}^{n} \mathcal{A}_{i}\right|=\sum_{i=1}^{n}\left|\mathcal{A}_{i}\right|
$$

$\mathcal{A d d i t i o n ~ R u l e ~}$

Let \mathcal{A} and \mathcal{B} be two disjoint finite sets.

The size of $\mathfrak{A} \cup \mathcal{B}$ is the sum of the size of \mathcal{A} and the size of \mathcal{B}.
$|\mathcal{A} \cup \mathcal{B}|=|\mathcal{A}|+|\mathcal{B}|$

Suppose I rolla white die and a black die.

$S \equiv$ Set of all outcomes where the dice showdifferent values.

$$
|s|=?
$$

$\mathcal{A}_{i} \equiv$ set of outcomes where the 6lack die says i and the white die says something else.

$$
|S|=\left|\bigcup_{i=1}^{6} \mathcal{A}_{i}\right|=\sum_{i=1}^{6}\left|\mathcal{A}_{i}\right|=\sum_{i=1}^{6} 5=30
$$

$S \equiv$ Set of all outcomes where the black die shows a smaller number than the white die. $|\mathcal{S}|=$?
$\mathcal{A}_{i} \equiv$ set of outcomes where the 6 lack die says i and the white die says something larger.

$$
\begin{aligned}
& S=\mathcal{A}_{1} \cup \mathcal{A}_{2} \cup \mathcal{A}_{3} \cup \mathcal{A}_{4} \cup \mathcal{A}_{5} \cup \mathcal{A}_{6} \\
& |S|=5+4+3+2+1+0=15
\end{aligned}
$$

$S \equiv$ Set of all outcomes where the dice showdifferent values.

$$
|\mathcal{S}|=?
$$

$\mathcal{T} \equiv$ set of outcomes where dice agree.

$$
|S \cup \mathcal{T}|=\# \text { of outcomes }=36
$$

$$
|S|+|\mathcal{T}|=36 \quad|\mathcal{T}|=6
$$

$$
|S|=36-6=30
$$

$S \equiv$ Set of all outcomes where the 6lack die shows a smaller number than the white die. $|S|=$?
$\mathcal{L} \equiv$ set of all outcomes where the black die shows a larger number than the white die.

$$
|s|+|\kappa|=30
$$

It is clear by symmetry that $|S|=|\mathcal{L}|$.
Therefore $\quad|S|=15$

Pinning down the ide a of symmetry by exfibiting a correspondence.

Let's put each outcome in S in correspondence with an outcome in \mathcal{L} by swapping the color of the dice.

Pinning down the ide a of symmetry by exfibiting a correspondence.

Let's put each outcome in S in correspondence with an outcome in \mathcal{L} by swapping the color of the dice.

Each outcome in S gets matcfied with exactly one outcome in \mathcal{L}, with none left over.

$$
\mathcal{T h u s}:|\mathcal{S}|=|\mathcal{L}| .
$$

$$
\mathcal{L e} t f: \mathcal{A} \rightarrow \mathcal{B}
$$

be a function from a set \mathcal{A} to a set \mathcal{B}.
f is $1-1$ if and only if
$\forall x, y \in \mathcal{A}, \quad x \neq y \Rightarrow f(x) \neq f(y)$
f is onto if and only if

For Every
$\mathcal{L e t} f: \mathcal{A} \rightarrow \mathcal{B}$
be a function from a set \mathcal{A} to a set \mathcal{B}.
f is 1-1 if and only if
$\forall x, y \in \mathcal{A}, \quad x \neq y \Rightarrow f(x) \neq f(y)$
f is onto if and only if
$\forall z \in \mathcal{B} \quad \exists x \in \mathcal{A} f(x)=z$

Correspondence Principle

If two finite sets can be placed into 1-1 onto correspondence, then they have the same size.

Correspondence Principle

If two finite sets can be placed into $1-1$ onto correspondence, then they fave the same size.

Question: How many n-bit sequences are there?

000000	\longleftrightarrow	0
000001	\longleftrightarrow	1
000010	\longleftrightarrow	2
000011	\longleftrightarrow	3
	\ldots	
$1 . .11111$	\longleftrightarrow	$2^{n}-1$

2^{n} sequences
$\mathcal{S}=\{a, b, c, d, e\}$ has many subsets.
$\{a\},\{a, b\},\{a, d, e\},\{a, b, c, d, e\}$, $\{e\}, \varnothing, \ldots$

The empty set is a set with all the rights and privileges pertaining thereto.

Question: How many subsets can be formed from the elements of a 5 . element set?

a	b	c	d	e
0	1	1	0	1

$\begin{cases}6 & c\end{cases}$
e\}

1 means "TAXE $I \mathcal{T}$ " 0 means "LEAVE $I T$ "

Question: How many subsets can be formed from the elements of a 5 . element set?

a	b	c	d	e
0	1	1	0	1

Each subset corresponds to a 5-6it sequence (using the "take it or leave it" code)

$$
\begin{gathered}
\mathcal{S}=\left\{a_{1}, a_{2}, a_{3}, \ldots, a_{n}\right\} \\
6=b_{1} b_{2} b_{3} \ldots b_{n}
\end{gathered}
$$

a_{1}	a_{2}	a_{3}	\ldots	a_{n}
b_{1}	b_{2}	b_{3}	\ldots	b_{n}

$$
f(b)=\left\{a_{i} \mid b_{i}=1\right\}
$$

a_{1}	a_{2}	a_{3}	\ldots	a_{n}
b_{1}	b_{2}	b_{3}	\ldots	b_{n}

$$
f(b)=\left\{a_{i} \mid b_{i}=1\right\}
$$

f is 1-1: Any two distinct binary sequences 6 and 6 'have a position i at which they differ. Hence, $f(b)$ is not equal to $f(b$ ') because they disagree onelement a_{i}.

a_{1}	a_{2}	a_{3}	\ldots	a_{n}
b_{1}	b_{2}	b_{3}	\ldots	b_{n}

$$
f(b)=\left\{a_{i} \mid b_{i}=1\right\}
$$

f is onto: Let S be a subset of $\left\{a_{1}, \ldots, a_{n}\right\}$. Let $b_{k}=1$ if a_{k} in $\mathcal{S} ; b_{k}=0$ otherwise. $f\left(b_{1} b_{2} . . b_{n}\right)=S$.

$\mathcal{L e t}: \mathcal{A} \rightarrow \mathcal{B}$

be a function from a set \mathcal{A} to a set \mathcal{B}.
f is 1-1 if and only if
$\forall x, y \in \mathcal{A}, x \neq y \Rightarrow f(x) \neq f(y)$
f is onto if and only if $\forall z \in \mathcal{B} \quad \exists x \in \mathcal{A} \quad f(x)=z$
$\mathcal{L e t} f: \mathcal{A} \rightarrow \mathcal{B}$
be a function from a set \mathcal{A} to a set \mathcal{B}.
f is a 1 to 1 correspondence iff
$\forall z \in \mathcal{B} \exists$ exactly one $x 2 \mathcal{A}$ s.t. $f(x)=z$
f is a K to 1 correspondence iff
$\forall z \in \mathcal{B} \exists$ exactly Kx $2 \mathcal{A}$ s.t. $f(x)=z$

\mathcal{A} restaurant has a menu with 5 appetizers, 6 entrees, 3 salads, and 7 desserts.

How many items on the menu?
$-5+6+3+7=21$
\mathcal{H} ow many ways to choose a complete meal?

- 5 * 6 * 3 * $7=630$
\mathcal{A} restaurant has a menu with
5 appetizers, 6 entrees, 3 salads, and 7 desserts.

How many ways to order a meal if I might not have some of the courses?

- 6 * 7 * 4 * $8=1344$

Hobson's restaurant has only 1 appetizer, 1 entree, 1 salad, and 1 dessert.
2^{4} ways to order a meal if I might not have some of the courses.

Same as number of subsets of the set
$\{$ Appetizer, Entrée, Salad, Dessert\}

Leaf Counting Lemma

Let \mathcal{T} be a depth ntree when each node at depth $0 \leq i \leq n$-1 has P_{i+1} children. The number of leaves of \mathcal{T} is given by:

$$
\mathcal{P}_{1} \mathcal{P}_{1} \mathcal{P}_{2} \ldots \mathcal{P}_{n}
$$

\mathcal{A} choice tree provides a"choice tree representation" of a set S, if

1) Each le af label is in S
2) No two le af labels are the same

Product Rule

If \mathcal{F} has a choice tree representation with P_{1} possibilities for the first choice, P_{2} for the second, and so on,
$\mathcal{T H E N}$
there are $\mathcal{P}_{1} \mathcal{P}_{2} \mathcal{P}_{3} . . \mathcal{P}_{n}$ objects in S

Proof:The leaves of the choice tree are in 1-1 onto correspondence with the elements of S.

Product Rule

S uppose that all objects of a type S can be constructed by a sequence of choices with P_{1} possibilities for the first choice, \mathcal{P}_{2} for the second, and so on.
$I \mathcal{F}$

1) Each sequence of choices constructs an object of type S
$\mathcal{A} \mathcal{N} \mathcal{D}$
2) \mathcal{N} o two different sequences create the same object
$\mathcal{T H E N}$
there are $\mathcal{P}_{1} \mathcal{P}_{2} \mathcal{P}_{3} . . \mathcal{P}_{n}$ objects of type S.
\mathcal{H} ow many different orderings of deckwith 52 cards?
What type of object are we making?

- Ordering of a deck

Construct an ordering of a deckby a
sequence of 52 choices:
52 possible choices for the first card; 51 possible choices for the second card; 50 possible choices for the third card;

1 possible choice for the $52^{\text {cond }}$ card.
\mathcal{A} permutation or arrangement of n objects is an ordering of the objects.

> The number of permutations of n distinct objects is n !

A permutation or arrangement of n objects is an ordering of the objects.
The number of
permutations of n
distinct objects is $n!$

\mathcal{H} ow many different orderings of deckwith 52 cards?

By the product rule:

52 * 51 * 50 * $\ldots{ }^{*} 3^{*} 2^{*} 1=52!$

52 "factorial" orderings

\mathcal{A} formalization

Let $\mathcal{S}(x): \Sigma^{*} \rightarrow\{\mathcal{T} r u e, \mathcal{F a l s e}\}$ be any predicate.

We can associate S with the set: $O \mathcal{B I} \mathcal{E C T} S_{S}=\left\{\chi \in \Sigma^{*} \mid S(x)\right\}$
the "object space" S (or objects of type S)

When $O \mathcal{B I E C O} S_{s}$ is finite, le t us define \# $O \mathcal{B I E C T S}{ }_{s}=$ the size of $O \mathcal{B I} \mathcal{E C T} \mathcal{S}_{s}$ In fact, define \# S as \# OBIECTS ${ }_{S}$

Object property Q on object space \mathcal{S}

Consider $Q(x):$ OBIECTS $s \rightarrow\{\mathcal{T} r$ ue, False $\}$
Define : $Q(x): O \mathcal{B I} \mathcal{E C T} \mathcal{S}_{S} \rightarrow\{\mathcal{T}$ rue, False $\}$
$\mathcal{A s} \operatorname{Input}(x)$; return $\mathcal{N O T} Q(x)$
Proposition: \# $Q=\# S \cdot \#(: Q)$

$\mathcal{H e} \operatorname{lpful} \mathcal{A d v i c e}$:
In logic, it can be useful to represent a statement in the contrapositive.

In counting, it can be useful to represent a set in terms of its complement.

The number of ways of ordering, permuting, or arranging r out of n objects.
nchoices for first place, $n-1$ choices for second place,...

$$
\begin{aligned}
& n^{*}(n-1) *(n-2) * \ldots *(n-(r-1)) \\
& =
\end{aligned}
$$

Ordered Versus Unordered
From a deck of 52 cards how many ordered pairs can be formed?

- 52 * 51

How many unordered pairs?

- $52 * 51 / 2 \leftarrow$ divide by overcount Each unordered pair is listed twice on a list of the ordered pairs, but we consider the ordered pairs to be the same.

Ordered Versus Ulnordered

From a deck of 52 cards how many ordered pairs canbe formed?
-52 * 51
How many unordered pairs?

- $52 * 51 / 2 \leftarrow$ divide by overcount

We have a 2 to 1 map from ordered pairs to unordered pairs. Hence: the \#unordered pairs = (\#ordered pairs)/2
\mathcal{A} combination or choice of r out of n objects is an (unordered) set of r of the nobjects.
The number of r combinations of n objects:

How many 8 bit sequences have 20 's and 6 1's?

Tempting, 6 ut incorrect:
8 ways to place first 0 times
7 ways to place second 0
Violates condition 2 of product rule! Choosing position ifor the first 0 and then position j for the second 0 gives the same sequence as choosing position j for the first 0 and position ifor the second.

How many 8 bit sequences have 20 's and 6 1's?

1) Choose the set of 2 positions to put the 0's. The 1's are forced.
2) Choose the set of 6 positions to put the 1 's. The 0 's are forced.

Symmetry in the formula:
How many hands have at least 3 aces?

How many hands have at least 3 aces?
How many fands have exactly 3 aces?

How many hands have exactly 4 aces?
$4512+48=4560$

Four different sequences of choices produce the same fand

$\mathcal{A} \& \mathcal{A} \bullet \mathcal{A}$	$\mathcal{A} \rightarrow \mathcal{K}$
$\mathcal{A} \& \mathcal{A} \bullet \mathcal{A}$	\mathcal{A}
$\mathcal{A} \& \mathcal{A A} \mathcal{A}$	\mathcal{A}, K
$\mathcal{A} \uparrow \mathcal{A} \bullet \mathcal{A}$	$\mathcal{A} \& \underline{K}$

The SLeut反's Criterion

Condition (2) of the product rule:

For any object it should be possible to reconstruct the sequence of choices which le ad to it.

1) Choose 3 of 4 aces
2) Choose 2 of the remaining cards

Sleuth can't determine which cards came from which choice.

$\mathcal{A} \& \mathcal{A} \bullet \mathcal{A}$	$\mathcal{A} \uparrow \mathcal{K}$
$\mathcal{A} \& \mathcal{A}$ 乐 \uparrow	$\mathcal{A} \bullet K$
$\mathcal{A} \dot{A} \uparrow \mathcal{A}$	\mathcal{A} K
$\mathcal{A} \wedge \mathcal{A} \bullet \mathcal{A}$	$\mathcal{A} \& \mathcal{K}$

1) Choose 3 of 4 aces
2) Choose 2 non-ace cards

$$
\mathcal{A} \approx Q \wedge \mathcal{A} \bullet \mathcal{A} \vee K
$$

Sleuth reasons:

The aces came from the first choice and the non-aces came from the second choice.

1) Choose 4 of 4 aces
2) Choose 1 non-ace
$\mathcal{A} \boldsymbol{A} \rightarrow \mathcal{A} \mathcal{A} \downarrow \mathcal{K}$
Sleuth reasons:

The aces came from the first choice and the non-ace came from the second choice.

