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Ancient Wisdom:
On Raising A Number To A

Power




Rhind Papyrus (1650 BC)
70*13




Rhind Papyrus (1650 BC)
70*13

70

140
280
560

Binary for 13 is 1101 = 23 + 22 + 20
70*13 = 70*23 + 70*22 + 70*20




Rhind Papyrus (1650 BC)

17
34
68
136

184 48 14




Rhind Papyrus (1650 BC)

17
34
68
136

184 48 14

184 = 17*8 + 17*2 + 14
184/17 = 10 with remainder 14




This method is called “Egyptian
Multiplication/Division” or
“Russian Peasant

Multiplication/Division”.




Wow. Those Russian
peasants were pretty

Q smart.




Standard Binary Multiplication
= Egyptian Multiplication
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Egyptian Base 3

Convention Base 3:
Each digit can be O, 1, or 2

Here is a strange new one:
Egyptian Base 3 uses -1, O, 1

Example:1-1-1=9-3-1=5




How could this be
Egyptian? Historically,
negative numbers first

appear in the writings of

the Hindu mathematician
Brahmagupta (628 AD).







One weight for each power of 3.
Left = "negative”. Right = "positive’




Our story so far

—

We can view numbers In
many different, but
corresponding ways.

Representation:
Understand the relationship between
different representations of the same

information or idea




So Far We Have Seen:

—

Induction i1s how we define
and manipulate
mathematical ideas.

I

Induction has many guises.
Master their interrelationship.

* Formal Arguments
* Loop Invariants

* Recursion

* Algorithm Design

e Recurrences




Let's Articulate A New One:

Abstraction:
Abstract away the inessential
features of a problem or solution




Even very
simple
computational
problems can
be surprisingly
subtle.




Compiler Translation

A compiler must translate a high
level language (e.g., C) with complex
operations (e.g., exponentiation)

intfo a lower level language (e.g.,
assembly) that can only support
simpler operations (e.g.,
multiplication).




b:=a*a
b:=b*b
b:=b*b

This method costs only 3
multiplications. The
savings are significant if
b:=a8 is executed often.




General Version

Given a constant k, how do we
implement b:=ak with the

fewest number of
multiplications?




Powering By Repeated
Multiplication

Input: an

Output: A sequence starting with
a, ending with a", and such
that each entry other
than the first is the
product of previous
entries.




Example




Definition of M(n)

M(n) = The minimum number of

multiplications required
to produce a" by
repeated multiplication




What is M(n)? Can we calculate it
exactly? Can we approximate it?

Exemplification:
Try out a problem or
solution on small examples.




Some Very Small Examples

What is M(1)?

- M) =0 [a]
* What is M(0)?

- M(0) is not clear how to define
* What is M(2)?

- M(2) =1 [a, a?]




M(8) = ?

a, a®, a*, a® is a way to make a8 in 3
multiplications. What does this tell
us about the value of M(8)?




M(8) = ?

a, a®, a*, a® is a way to make a8 in 3
multiplications. What does this tell
us about the value of M(8)?

M(8) < 3\

Upper Bound







Lower Bound

3 < M(8)

Exhaustive Search. There are only two
sequences with 2 multiplications. Neither
of them make 8:

a, a2, a’& a, a4, a*







Applying Two Ideas

Abstraction:
Abstract away the inessential
features of a problem or solution

Representation:
Understand the relationship between
different representations of the same

information or idea




What is the more essential
representation of M(n)?

(((

Abstraction: Representation:
Abstract away the inessential Understand the relationship between
features of a problem or solution different representations of the same
information or idea




The a is a red herring.

a* fimes a¥ i1s ax*

e

Everything besides the exponent
IS Inessential. This should be
viewed as a problem of repeated

iaddition, rather than repeated
multiplication.
/




Addition Chains

M(n) = Number of stages required
to make n, where we start
at 1 and in each subsequent

stage we add two
previously constructed
numbers.




Examples

Addition Chain for 8:
12358

Minimal Addition Chain for 8:
1248




Addition Chains Are A Simpler To
Represent The Original Problem

Abstraction:
Abstract away the inessential
features of a problem or solution

Representation:
Understand the relationship between
different representations of the same

information or idea







Some Addition Chains For 30

2 4 8 16 24 28 30

10 20 30

10 15 30




? <M(30)<6

?2<M() <?




Binary Representation

Let B, be the number of 1s in the binary
representation of n. Ex: Bs = 2 since 101 is
the binary representation of 5

Proposition: B, < | log, (n) | +1

The length of the binary representation of
n is bounded by this quantity.




Binary Method
Repeated Squaring Method
Repeated Doubling Method

Phase T (Repeated Doubling)
For |log, n| stages:
Add largest so far to itself
(1,2,4,8,16,...)

Phase IT (Make n from bits and pieces)

Expand n in binary to see how n is the sum
of B, powers of 2. Use B, -1 stages to make n
from the powers of 2 created in phase I

Total Cost: |log,n|+ B, -1




Binary Method Applied To 30

Binary
30 11110

Phase I

1

10

1{0]0

1000

16 10000

Phase IT: 6 14 30 (Cost: 7 additions)




Rhind Papyrus (1650 BC)
What is 30 times 5?

30 by a chain of 7:

1248162428 30

Repeated doubling is
the same as the
Egyptian binary
multiplication




Rhind Papyrus (1650 BC)
- Actually used faster chain for 30*5.

30 by a chain of 6:

124 8102030




The Egyptian Connection

A shortest addition chain for n gives a
shortest method for the Egyptian
approach to multiplying by the number
q

The fastest scribes would seek to know
M(n) for commonly arising values of n.




M(n) < |log,n|+B, -1 < 2|log, n|




Abstraction:
Abstract away the inessential
features of a problem or solution

We saw that applying

ABSTRACTION to the

PROBLEM simplifies
the Issue.

PROBLEM = Raising
A Number To A
Power.




Abstraction:
Abstract away the inessential
features of a problem or solution

I Camant - i |
N i S ]

What about
ABSTRACTION to

the SOLTUTION
?77?77

Let SOLUTION be

the Repeated
Squaring Algorithm.




What features
did our solution
(RQA) actually
make use of?




For example,
does the RQA
require the
underlying
objects to be

numbers?




Abstraction:
Abstract away the inessential
features of a problem or solution

The repeated
sguaring method
works for modular
arithmetic and for
raising a matrix to a

power.




Abstraction:
Abstract away the inessential
features of a problem or solution

The repeated
sguaring method
works for any notion
of “multiplication”
that is associative.

(a*b)*c = a*(b*c)
ak is well defined
ax*ay =axty




GENERALIZATION

Always ask yourself what your
solution actually requires.




? <M(30)<6

?2 <M(n) <?2llog: ()

(AN
»




A Lower Bound Idea

You can't make any number bigger than
2" in n steps.

124816 3264...

Failure of
Imagination?




Induction Proof

Theorem: For all n =0, no n stage
addition chain will contain a number
greater than 2"




Let Sy be the statement that no k stage

addition chain will contain a number greater
than 2k

Base case: k=0. S, is true since no chain can
exceed 20 after O stages.

Vk>0, S, = S,

At stage k+1 we add two numbers from the
previous stage. From S, we know that they
both are bounded by 2k. Hence, their sum is
bounded by 2k No number greater than 2k
can be present by stage k+1.




Proof By Invariant
(Induction)

Invariant: All the numbers created by stage
n, are less than or equal to 2"

The invariant is true at the start.

Suppose we are at stage k. If the invariant
is Trye, then the two nurrét&ers e decide 1o
sum for stage k+1 are < 2k and hence create
a humber less than or equal to 2k1. The
invariant is thus true at stage k+1.




Change Of Variable

All numbers obtainable in m stages are
bounded by 2™. Let m = log,(n).

Thus, All numbers obtainable in log,(n)
stages are bounded by n.

M(n) = log,(n)
In fact, M(n) = [log,(n) |




Theorem: 2' is the largest number that
can be made in i stages, and can only
be made by repeated doubling

Base i = O is clear.

To make anything as big as 2' requires
having some X as big as 2! ini-1
stages. By I.H., we must have all the
powers of 2 up to 2! at stage i-1.
Hence, we can only double 27{i-1} at
stage i. The theorem follows.




? <M(30)<6

log,n SM (ﬂ) < 2| log; (n) |

(AN
»




5 < M(30)

Suppose that M(30)=5. At the last stage, we
added two humbers x; and x, to get 30.

Without loss of generality (WLOG), we
assume that x;= x,.

Thus, x;= 15
By doubling bound, x; < 16

But x; can't be 16 since there is only one way
to make 16 in 4 stages and it does not make
14 along the way.

Thus, x;= 15 and M(15)=4




Suppose M(15) = 4

At stage 3, a number bigger than 7.5, but not
more than 8 must have existed. There is only
onhe sequence that gets 8 in 3 additions: 12 4
8

That sequence does not make 7 along the way
and hence there is nothing to add to 8 to
make 15 at the next stage.

Thus, M(15)>4. CONTRADICTION.










Rhind Papyrus (1650 BC)

30 =124810 2030




Factoring Bound

M(ab) < M(a)+M(b)




Factoring Bound

M(ab) < M(a)+M(b)
Proof:
e Construct a in M(a) additions

e Using a as a unit follow a construction
method for b using M(b) additions. In
other words, every time the
construction of b refers to a number X,
use the number a times x.




Example

45:=5%*9

M(5)=3 [12 4 5]

M(9)=4 [12489]
M(45) < 3+4 [12 4510 20 40 45]




Corollary (Using Induction)

M(a;a,a;..a,) < M(a;)+*M(a,)+..+M(a,)

Proof: For n=1 the bound clearly holds.
Assume it has been shown for up to

n-1. Apply theorem using a= q,a,a;...a, ; and
b=a, to obtain:
M(a;a,a5...a,) < M(q,a,a;...a, 1)+*M(a,)
By inductive assumption,
M(a;a,a;...a, ;) < M(a;)+*M(a,)+..+M(a, ;)




More Corollaries

Corollary: M(ak) < kM(a)

Corollary: M(p,"'p, 2p3 3...p, ")

< o;M(p;) + aM(p,) +..+ a,M(p,)

Does equality hold?




M(33) < M(3) + M(11)
M(3) = 2 [12 3]
M(11)= 5 [12 3510 11]
M@3) + M(11) = 7

M(33) = 6 [124816 32 33]

The conjecture of equality fails. There have
been many nice conjectures. . ..




Conjecture: M(2n) = M(n) +1
(A. Goulard)

A fastest way to an even number is to make
half that number and then double it.

Proof given in 1895 by E. de Jonquieres in
L' Intermediere Des Mathematiques ‘/olume
2, pages 125-126

FALSE! M(191)=M(382)=11
Furthermore, there are
infinitely many such
examples.




Open Problem

Is there an n such that:

M(2n) < M(n)




Conjecture

Each stage might as well consist of
adding the largest number so far to one
of the other numbers.

First Counter-example: 12,509
[1248 16 17 32 64 128 256 512
1024 1041 2082 4164 8328 8345
12509]




Open Problem

Prove or disprove the Scholz-
Brauer Conjecture:

M(2"-1)<n-1+B,

(The bound that follows from this
lecture is too weak: M(2"-1) < 2n - 1)




High Level Point

Don't underestimate "simple”
problems. Some "simple”
mysteries have endured for
thousand of years.




g Study Bee
\\ )
L 0 heek” Raising To A Power
‘ ' Minimal Addition Chain

m Lower and Upper Bounds

\\ QA [Repeated Squaring Algorithm]
¥ QA works for ANY binary operator




Study Bee

Representation: Induction has many guises.
Understand the relationship between Master their interrelationship.
different representations of the same

information or idea

« Formal Arguments

« Loop Invariants

« Recursion
. « Algorithm Design
* Recurrences

Abstraction:
Abstract away the inessential
features of a problem or solution

Exemplification:
Try out a problem or
solution on small examples.
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