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Unary and Binary

Carnegie Mellon UniversityJan 20, 2005Lecture 4
CS 15-251       Spring 2005Steven Rudich

Great Theoretical Ideas In Computer Science

Your Ancient Heritage

Let’s take a historical 
view on abstract 
representations.

Mathematical Prehistory:
30,000 BC

Paleolithic peoples in Europe record 
unary numbers on bones.

1 represented by 1 mark
2 represented by 2 marks
3 represented by 3 marks
4 represented by 4 marks
…

Prehistoric Unary
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4

PowerPoint Unary
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4

Hang on a minute! 

Isn’t unary a bit literal
as a representation? 
Does it deserve to be 

viewed as an “abstract” 
representation?
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In fact, it is important to 
respect the status of 

each representation, no 
matter how primitive. 

Unary is a perfect object 
lesson. 

Consider the problem of 
finding a formula for the 

sum of the first n 
numbers. 

We already used 
induction to verify that 
the answer is ½n(n+1) 

Consider the problem of 
finding a formula for the 

sum of the first n 
numbers. 

First, we will give the 
standard high school 

algebra proof…. 

1 + 2 + 3 + . . . + n-1 + n = S

n + n-1 + n-2 + . . . + 2 + 1 = S

(n+1)  + (n+1) + (n+1) + . . . + (n+1)  + (n+1)   =    2S

n (n+1) =    2S   

1 + 2 + 3 + . . . + n-1 + n = S

n + n-1 + n-2 + . . . + 2 + 1 = S

(n+1)  + (n+1) + (n+1) + . . . + (n+1)  + (n+1)   =    2S

n (n+1) =    2S   

1 + 2 + 3 + . . . + n-1 + n = S

n + n-1 + n-2 + . . . + 2 + 1 = S

(n+1)  + (n+1) + (n+1) + . . . + (n+1)  + (n+1)   =    2S

n (n+1) =    2S
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1 + 2 + 3 + . . . + n-1 + n = S

n + n-1 + n-2 + . . . + 2 + 1 = S

(n+1)  + (n+1) + (n+1) + . . . + (n+1)  + (n+1)   =    2S

n (n+1) =    2S

2
1)(n n

  S
+=

1 + 2 + 3 + . . . + n-1 + n = S

n + n-1 + n-2 +  . . .  + 2 + 1 = S

(n+1)  +  (n+1) +  (n+1) +     . . .      + (n+1)  + (n+1)   =    2S

n (n+1)     =    2S

Let’s restate this argument 
using a UNARY
representation

Algebraic argument

1     2 . . . . . . . . n

= number of white dots.1 + 2 + 3 + . . . + n-1 + n = S

n + n-1 + n-2 +  . . .  + 2 + 1 = S

(n+1)  +  (n+1) +  (n+1) +     . . .      + (n+1)  + (n+1)   =    2S

n (n+1)     =    2S

1 + 2 + 3 + . . . + n-1 + n = S

n + n-1 + n-2 +  . . .  + 2 + 1 = S

(n+1)  +  (n+1) +  (n+1) +     . . .      + (n+1)  + (n+1)   =    2S

n (n+1)     =    2S

1     2 . . . . . . . . n

= number of white dots

= number of yellow dots

n  . . . . . . .  2   1

1 + 2 + 3 + . . . + n-1 + n = S

n + n-1 + n-2 +  . . .  + 2 + 1 = S

(n+1)  +  (n+1) +  (n+1) +     . . .      + (n+1)  + (n+1)   =    2S

n (n+1)     =    2S

n+1   n+1    n+1     n+1   n+1

= number of white dots

= number of yellow dots

n

n

n

n

n

n

There are n(n+1) 
dots in the grid

1 + 2 + 3 + . . . + n-1 + n = S

n + n-1 + n-2 +  . . .  + 2 + 1 = S

(n+1)  +  (n+1) +  (n+1) +     . . .      + (n+1)  + (n+1)   =    2S

n (n+1)     =    2S

n+1   n+1    n+1     n+1   n+1

= number of white dots

= number of yellow dots

n

n

n

n

n

n

2
1)(n n

  S
+

=
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Very convincing! The 
unary representation 

brings out the geometry 
of the problem and makes 

each step look very 
natural.

By the way, my name is 
Bonzo. And you are?

Odette.

Yes, Bonzo. Let’s 
take it even 
further… 

nth Triangular Number

∆n = 1 + 2 + 3 + . . . + n-1 + n

= n(n+1)/2

nth Square Number

�n = ∆n + ∆n-1

= n2

Breaking a square up in a new way. Breaking a square up in a new way.

 1
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Breaking a square up in a new way.

 1 + 3

Breaking a square up in a new way.

 1 + 3 + 5

Breaking a square up in a new way.

 1 + 3 + 5 + 7

Breaking a square up in a new way.

 1 + 3 + 5 + 7 + 9

The sum of the first 5 odd numbers is 5 squared

 1 + 3 + 5 + 7 + 9 = 52

 The sum of the 
first n odd numbers 

is n squared.

Pythagoras
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Here is an 
alternative dot 

proof of the 
same sum…. 

nth Square Number

�n = ∆n + ∆n-1

= n2

nth Square Number

�n = ∆n + ∆n-1

= n2

Look at the columns!

�n = ∆n + ∆n-1

.

Look at the columns!

�n = ∆n + ∆n-1

= Sum of first n odd numbers.

High School Notation

∆n + ∆n-1 = 
1 + 2 + 3 + 4 + 5 ...

+      1 + 2 + 3 + 4 ...
1 + 3 + 5 + 7 + 9 …

Sum of odd numbers
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Check the next 
one out… 

( ∆n-1)2 = area of square

( ∆n-1)2

∆n-1

( ∆n)2 = area of square

( ∆n-1)2

∆n-1 n

n
n∆n + n∆n-1

= n (∆n + ∆n-1)
= n �n

= n = area of pieces ( ∆n-1)2

∆n-1 n

n

( ∆n)2 = ( ∆n-1)2 + n

( ∆n)2 = ( ∆n-1)2 + n

( ∆n)2 =     +        + . . . + n

Can you find a formula 
for the sum of the 
first n squares?

The Babylonians 
needed this sum to 

compute the number 
of blocks in their 

pyramids.
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The ancients 
grappled with 
problems of 

abstraction in 
representation and 

reasoning. 

Let’s look back to 
the dawn of 
symbols…

Sumerians [modern Iraq]
8000 BC Sumerian tokens use multiple

symbols to represent numbers

3100 BC Develop Cuneiform writing

2000 BC Sumerian tablet demonstrates:
base 10 notation (no zero)
solving linear equations
simple quadratic equations

Biblical timing: Abraham born in the 
Sumerian city of Ur

Babylonians absorb Sumerians

1900 BC Sumerian/Babylonian Tablet
Sum of first n numbers
Sum of first n squares
“Pythagorean Theorem”
“Pythagorean Triplets”, e.g., 3-4-5
some bivariate equations

Babylonians

1600 BC Babylonian Tablet
Take square roots
Solve system of n linear equations

6000 BC Multiple symbols for numbers

3300 BC Developed Hieroglyphics

1850 BC Moscow Papyrus 
Volume of truncated pyramid

1650 BC Rhind Papyrus [Ahmose]
Binary Multiplication/Division 
Sum of 1 to n
Square roots
Linear equations

Biblical timing: Joseph is Governor  of 
Egypt.

Egyptians Harrappans [Indus Valley Culture]
Pakistan/India

3500 BC Perhaps the first writing system?!

2000 BC Had a uniform decimal system of
weights and measures 
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China

1200 BC Independent writing system
Surprisingly late.

1200 BC I Ching [Book of changes]
Binary system developed to do 
numerology.

Rhind Papyrus
Scribe Ahmose was the Martin 

Gardener of his day! 

Rhind Papyrus
87 Problems. 

A man has seven houses,
Each house contains seven cats,
Each cat has killed seven mice,
Each mouse had eaten seven ears of spelt,
Each ear had seven grains on it.
What is the total of all of these? 

Sum of first  
five powers 

of 7

We will soon need this 
fundamental sum:

The Geometric Series

1 + X1 + X2 + X 3 + … + Xn-2 + Xn-1 =
Xn – 1     

X - 1

A Frequently Arising Calculation

(X-1) ( 1 + X 1 + X2 + X 3 + … + Xn-2 + Xn-1 )

= X1 + X2 + X 3 + …           + Xn-1 + Xn

- 1 - X1 - X2 - X 3 - …  - Xn- 2 – Xn-1

=       - 1                       + Xn

=           Xn - 1

Action Shot: Mult by X is a SHIFT 

X ( 1 + X1 + X2 + X 3 + … ………..+ Xn-2 + Xn-1 )

= + X1 + X2 + X 3 + …           + Xn-1 + Xn
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The Geometric Series

(X-1) ( 1 + X 1 + X2 + X 3 + … + Xn-2 + Xn-1 ) = Xn - 1

1 + X1 + X2 + X 3 + … + Xn-2 + Xn-1 =
Xn – 1     

X - 1

when X≠1

The Geometric Series
When X=2

1+ 21 +22 + 23 + … 2n-1 = 2n -1

1 + X1 + X2 + X 3 + … + Xn-2 + Xn-1 =
Xn – 1     

X - 1

when X≠1

The Geometric Series
When X=3

1+ 31 +32 + 33 + … 3n-1 = (3n -1)/2

1 + X1 + X2 + X 3 + … + Xn-2 + Xn-1 =
Xn – 1     

X - 1

when X≠1

The Geometric Series
When X= ½ 

1+ ½1 + ½2 + ½3 + … ½n-1 = (½n -1)/ -½ = 2-(½)n-1

1 + X1 + X2 + X 3 + … + Xn-2 + Xn-1 =
Xn – 1     

X - 1

when X≠1

Numbers and their 
properties can be 

represented as strings 
of symbols.

Strings Of Symbols.

We take the idea of symbol and sequence of 
symbols as primitive.

Let Σ be any fixed finite set of symbols. 
Σ is called an alphabet, or a set of symbols. 
Examples: 

Σ = {0,1,2,3,4}
Σ = {a,b,c,d, …, z}
Σ = all typewriter symbols.
Σ = { a , b , c , d , …, z }
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Strings over the alphabet Σ.

A string is a sequence of symbols from Σ. 

Let s and t be strings. Then st denotes the 
concatenation of s and t; i.e.,  the string 
obtained by the string s followed by the 
string t.

Now define Σ+ by these inductive rules:
x 2 Σ ) x 2 Σ+

s,t 2 Σ+ ) st 2 Σ+

Intuitively, Σ+ is the 
set of all finite 

strings that we can 
make using (at least 
one) letters from Σ.  

The set Σ∗

Define ε be the empty string. 
I.e., XεY= XY for all strings X and Y.

ε is also called the string of length 0.

Define Σ0 = { ε }

Define Σ* = Σ+ [ {ε}

Intuitively, Σ* is the 
set of all finite 

strings that we can 
make using letters 

from Σ, including the 
empty string.  

Let DIGITS 
= 

{0,1,2,3,4,5,6,7,8,9} 
be a symbol 
alphabet. 

Any string in 
DIGITS+ will be 
called a decimal 

number.

Let BITS 
= {0,1} 

be a symbol 
alphabet. 

Any string in BITS+

will be called a 
binary number.
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Let ROCK 
= {S} 

be a symbol 
alphabet. 

Any string in ROCK+

will be called a unary 
number.

We need to specify 
the map between 
sets of sequences 

and numbers.

Inductively defined 
function f: ROCK+ -> N

f(S) = 1
f(SX) = f(X) + 1

Inductively defined 
function f: BITS+ -> N

f(0) = 0; f(1) =1
If |W| > 1 then W =

Xb (b2 BITS)
2f(X) + b

Non-inductive 
representation of f:

g(an-1 an-2 … a0) =

an-1*2n-1 + an-2 * 2n-2

+…+ a0 20

f(0) = 0; f(1) =1
If |W| > 1 then W = Xb (b2

BITS)
2f(X) + b

g(an-1 an-2 … a0) =
an-1*2n-1 + an-2 * 2n-2

+…+ a0 20

Base: g(0) =0; g(1) =1



13

f(0) = 0; f(1) =1
If |W| > 1 then W = Xb (b2

BITS)
2f(X) + b

g(an-1 an-2 … a0) =
an-1*2n-1 + an-2 * 2n-2

+…+ a0 20

g(an-1 an-2 … a0) = 
2g(an-1 an-2 … a1  )+ a0

g(an-1 an-2 … a0) = 
2g(an-1 an-2 … a1   )+ a0

ACTION SHOT: Mult by 2 as SHIFT

2 (an-1*2n-2 + an-2 * 2n-3 +…+ a1 20 ) =

an-1*2n-1 + an-2 * 2n-2 +…+ a1 21

TWO IDENTICAL MAPS 
FROM SEQUENCES TO 

NUMBERS:
f(0) = 0; f(1) =1

If |W| > 1 then W = Xb (b2
BITS)

2f(X) + b

f(an-1 an-2 … a0) =
an-1*2n-1 + an-2 * 2n-2

+…+ a0 20

The symbol a0 is called the 
Least Significant Bit or the 

Parity Bit. a0 = 0 iff an-1*2n-1

+ an-2 * 2n-2 +…+ a0 20

is an even number.

f(an-1 an-2 … a0) =
an-1*2n-1 + an-2 * 2n-2

+…+ a0 20

Theorem: Each natural has at 
least one binary 
representation. 

Base Case: 0 and 1 do. 
Induction hypothesis: 

Suppose all natural numbers 
less than n have a binary 
representation. Note that 

n=2m+b for some m<n,
b=0 or 1. Represent n as the 
left-shifted sequence for m 

concatenated with the 
symbol for b.

Theorem: Each natural has a 
unique binary representation. 
Base: 0 and 1 do. Induction 
Hypothesis: Every natural 
number less than n has a 

unique binary representation. 
Suppose n=2m+b has 2 binary 

representations W and V. 
Their parity bit b must be 
identical. Hence, m also has 

two distinct binary 
representations, which 

contradicts the induction 
hypothesis. So n must have a 

unique representation.
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Inductive definition is great 
for showing UNIQUE 

representation:
If |W| > 1 then W = Xb (b2

BITS)
2f(X) + b

Let n be the smallest number 
reprinted by two different 

binary sequences. They must 
have the same parity bit, 

thus we can make a smaller 
number that has distinct 

representations.

EACH NATURAL 
NUMBER HAS A 

UNIQUE 
REPRESENTATION 

AS A BINARY 
NUMBER.

BASE X:
S = an-1, an-2, …, a0 

represents the number: 
an-1 Xn-1 + an-2 Xn-2 + . . . + a0 X0

Base 2 [Binary Notation]
101 represents 1 (2)2 + 0 (21) + 1 (20) 
= 

Base 7
015 represents 0 (7)2 + 1 (71) + 5 (70)
=

Bases In Different Cultures

Sumerian-Babylonian: 10, 60, 360
Egyptians: 3, 7, 10, 60
Africans: 5, 10
French: 10, 20
English: 10, 12,20

Fundamental Theorem For Binary:

Each of the numbers from 0 to 2n-1 is 
uniquely represented by an n-digit 

number in binary. 

k uses  log2k  + 1 digits in base 2.

Fundamental Theorem For Base X:

Each of the numbers from 0 to Xn-1 is 
uniquely represented by an n-digit 

number in base X. 

k uses  logxk  + 1 digits in base X.
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n has length n in 
unary, but has length 
 log2n  + 1 in binary.

Unary is exponentially 
longer than binary.

Egyptian Multiplication

The Egyptians 
used decimal 
numbers but 

multiplied and 
divided in binary

Egyptian Multiplication a times b
by repeated doubling

b has some n-bit representation: bn..b0

Starting with a, 
repeatedly double largest so far to 
obtain:   a, 2a, 4a, …., 2na

Sum together all 2ka where bk = 1

Egyptian Multiplication 15 times 5
by repeated doubling

5 has some 3-bit representation: 101

Starting with 15, 
repeatedly double largest so far to 
obtain:   15, 30, 60

Sum together all 2k(15) where bk = 1:
15  +   60    = 75

Why does that work?

b =  b020 +  b121 +  b222 + … +  bn2n

ab =  b020a +  b121a +  b222a + … +  bn2na

If bk is 1 then 2ka is in the sum.
Otherwise that term will be 0.

Wait! How did the 
Egyptians do the part 

where they converted b to 
binary?
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They used repeated 
halving to do base 
conversion. Consider …

Egyptian Base Conversion

Output stream will print right to left.
Input X. 
Repeat until X=0
{ 

If X is even then Output O;
Otherwise {X:=X-1; Output 1}

X:=X/2
}

Egyptian Base Conversion

Output stream will print right to left.
Input X. 
Repeat until X=0
{ 

If X is even then Output O;
Otherwise Output 1

X:= X/2
}

Start the algorithm

Repeat until X=0
{ If X is even then Output O;         

Otherwise Output 1;
X:= X/2

}

010101 1

Start the algorithm

Repeat until X=0
{ If X is even then Output O;         

Otherwise Output 1;
X:= X/2

}

01010 1

Start the algorithm

Repeat until X=0
{ If X is even then Output O;         

Otherwise Output 1;
X:= X/2

}

01010 01
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Start the algorithm

Repeat until X=0
{ If X is even then Output O;         

Otherwise Output 1;
X:= X/2

}

0101 01

Start the algorithm

Repeat until X=0
{ If X is even then Output O;         

Otherwise Output 1;
X:= X/2

}

0101 101

Start the algorithm

Repeat until X=0
{ If X is even then Output O;         

Otherwise Output 1;
X:= X/2

}

010 101

And Keep Going until 0

Repeat until X=0
{ If X is even then Output O;         

Otherwise Output 1;
X:= X/2

}

0 010101

Sometimes the Egyptian 
combined the base 
conversion by halving and 
the multiplication by 
doubling into one algorithm

Rhind Papyrus (1650 BC)
70*13

70
140
280
560

13 * 70
6
3 * 350
1    * 910
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Rhind Papyrus (1650 BC)
70*13

70
140
280
560

13 * 70
6
3 * 350
1    * 910

Binary for 13 is 1101 = 23 + 22 + 20

70*13 =  70*23 + 70*22 + 70*20

Rhind Papyrus (1650 BC)

17
34
68
136

1
2  *
4
8  *

184 48  14

Rhind Papyrus (1650 BC)

17
34
68
136

1
2  *
4
8  *

184 48  14

184 = 17*8 + 17*2 + 14
184/17 = 10 with remainder 14

This method is called “Egyptian 
Multiplication/Division” or 
“Russian Peasant 
Multiplication/Division”. 

Wow. Those Russian 
peasants were pretty 

smart.

Standard Binary Multiplication
=    Egyptian Multiplication

X
101 

* * * * * * * * 

* * * * * * * *
* * * * * * * *

* * * * * * * * * * *


