	reat Theoretical I deas I n Co				
Steven Rudich		CS 15-251	Spring 2005		
Lecture 4	Jan 20, 2005	Carnegie Mellon University			
		iry			

In fact, it is important to respect the status of each representation, no matter how primitive. Unary is a perfect object lesson.

Consider the problem of finding a formula for the sum of the first n numbers.

We already used induction to verify that the answer is ½n(n+1)

1	+	2	+	3	+	 +	n-1	+	n	=	s
n	+	n-1	+	n-2	+	 +	2	+	1	=	s

1	+	2	+	3	+	 +	n-1	+	n	=	s
n	+	n-1	+	n-2	+	 +	2	+	1	=	S
(n+1)	+	(n+1)) +	(n+1)+	 +	(n+1) +	(n+1)	=	2S
								n (n-	⊦1)	=	2S

Babylonians absorb Sumerians

1900 BC Sumerian/Babylonian Tablet Sum of first n numbers Sum of first n squares "Pythagorean Theorem" "Pythagorean Triplets", e.g., 3-4-5 some bivariate equations

Babylonians

1600 BC Babylonian Tablet Take square roots Solve system of n linear equations

Egyptians 6000 BC Multiple symbols for numbers 3300 BC Developed Hieroglyphics 1850 BC Moscow Papyrus Volume of truncated pyramid 1650 BC Rhind Papyrus [Ahmose] Binary Multiplication/Division Sum of 1 to n Square roots Linear equations Biblical timing: Joseph is Governor of

Egypt.

Harrappans [Indus Valley Culture] Pakistan/India

3500 BC Perhaps the first writing system?!

2000 BC Had a uniform decimal system of weights and measures

China

1200 BC I ndependent writing system Surprisingly late.

1200 BC I Ching [Book of changes] Binary system developed to do numerology.

A Frequently Arising Calculation

$$(X-1) (1 + X^{1} + X^{2} + X^{3} + ... + X^{n-2} + X^{n-1})$$

$$= X^{1} + X^{2} + X^{3} + ... + X^{n-1} + X^{n}$$

$$- 1 - X^{1} - X^{2} - X^{3} - ... - X^{n-2} - X^{n-1}$$

$$= -1 + X^{n}$$

$$= X^{n} - 1$$

Action Shot: Mult by X is a SHIFT
X
$$(1 + X^{1} + X^{2} + X^{3} + ... + X^{n-2} + X^{n-1})$$

= $+ X^{1} + X^{2} + X^{3} + ... + X^{n-1} + X^{n}$

The Geometric Series
(X-1)
$$(1 + X^{1} + X^{2} + X^{3} + ... + X^{n-2} + X^{n-1}) = X^{n} - 1$$

 $1 + X^{1} + X^{2} + X^{3} + ... + X^{n-2} + X^{n-1} = \frac{X^{n} - 1}{X - 1}$
when X \neq 1

The Geometric Series
When X=2

$$1+ 2^{1}+2^{2}+2^{3}+...+2^{n-1}=2^{n}-1$$

 $1+X^{1}+X^{2}+X^{3}+...+X^{n-2}+X^{n-1}=\frac{X^{n}-1}{X-1}$
when X≠1

Strings over the alphabet Σ .

A string is a sequence of symbols from Σ .

Let s and t be strings. Then st denotes the concatenation of s and t; i.e., the string obtained by the string s followed by the string t.

Now define Σ^{+} by these inductive rules: x 2 Σ) x 2 Σ^{+} s,t 2 Σ^{+}) st 2 Σ^{+}

The set Σ^* Define ε be the empty string. I.e., $X\varepsilon Y = XY$ for all strings X and Y. ε is also called the string of length 0. Define $\Sigma^0 = \{ \varepsilon \}$ Define $\Sigma^* = \Sigma^* [\{ \varepsilon \}$

Fundamental Theorem For Binary:

Each of the numbers from 0 to 2ⁿ-1 is uniquely represented by an n-digit number in binary.

k uses $\lfloor \log_2 k \rfloor + 1$ digits in base 2.

Fundamental Theorem For Base X:

Each of the numbers from 0 to Xⁿ-1 is uniquely represented by an n-digit number in base X.

k uses $\lfloor \log_x k \rfloor + 1$ digits in base X.

Egyptian Multiplication a times b by repeated doubling

b has some n-bit representation: b_n..b_o

Starting with a, repeatedly double largest so far to obtain: a, 2a, 4a,, 2^na

Sum together all 2^k a where $b_k = 1$

Egyptian Multiplication 15 times 5 by repeated doubling

5 has some 3-bit representation: 101

Starting with 15, repeatedly double largest so far to obtain: 15, 30, 60

Sum together all $2^{k}(15)$ where $b_{k} = 1$: 15 + 60 = 75

Why does that work?

 $b = b_0 2^0 + b_1 2^1 + b_2 2^2 + \dots + b_n 2^n \\ ab = b_0 2^0 a + b_1 2^1 a + b_2 2^2 a + \dots + b_n 2^n a$

If b_k is 1 then 2^k a is in the sum. Otherwise that term will be 0.

	Rhind Papyrus (165 70*13	50 BC)
70	13 *	70
140 280	6 3 *	350
560	1 *	910

	Rhind Papyrus (1650 BC) 70*13	
70	13 * 70	
140	6	
280	3 * 350	
560	1 * 910	
	ry for 13 is 1101 = 2 ³ + 2 ² + 2 ⁰ 13 = 70*2 ³ + 70*2 ² + 70*2 ⁰	

	Rhind Papyrus (1650 BC)
17	1
34	2 *
68	4
136	8 *
184	4 48 14

R	hind Papyrus (1650 BC)				
17	1				
34	2 *				
68	4				
136	8 *				
184 48 14					
184 = 17*8 + 17*2 + 14 184/17 = 10 with remainder 14					

