

Mathematic al Prefistory: 30,000 BC

Pale olithic peoples in Europe record unary numbers on bones.

1 represented by 1 mark
2 represented by 2 marks
3 represented by 3 marks
4 represented by 4 marks
...

$2 \bigcirc$
$3 \bigcirc$
$4 \bigcirc 0$

Consider the problem of finding a formula for the sum of the first n numbers.

We atready used induction to verify that the answer is $1 / 2 n(n+1)$

Consider the problem of
finding a formula for the sum of the first n numbers.

First, we will give the standard figh school alge bra proof...
$1+2+3+\ldots+n+n+n=s$
$n+n-1+n+2+1=s$

n

$1+2+3+\ldots+n-1+n=s$
$n+n-1+n-2+\ldots+2+1=s$
$(n+1)+(n+1)+(n+1)+\ldots$
$+(n+1)+(n+1)=2 s$
$n(n+1)=2 s$

$1+2+3+\ldots+n-1+n=s$ number of white dots.

$1+2+3+\ldots+n+1+n=s$	$=$ number of white dots
	$=$ number of yellow dots

Very convincing! The unary representation brings out the geometry of the problem and makes each steplookvery natural.
$\mathcal{B} y$ the way, my name is Bonzo. And you are?

$n^{\text {th }}$ Triangular \mathfrak{N} (umber
$\Delta_{n}=1+2+3+\ldots+n-1+n$
$=n(n+1) / 2$

Look at the columns!

$$
{ }_{n}=\Delta_{n}+\Delta_{n-1}
$$

Lookat the columns!
High School Notation

$$
\begin{aligned}
& \Delta_{n}+\Delta_{n-1}= \\
& 1+2+3+4+5 \ldots \\
& \frac{+\quad 1+2+3+4 \ldots}{1+3+5+7+9 \ldots} \\
& \text { Sum of odd numbers }
\end{aligned}
$$

$\left(\Delta_{n-1}\right)^{2}=$ area of square

$$
\left(\Delta_{n}\right)^{2}=\left(\Delta_{n-1}\right)^{2}+\square_{n}
$$

Babylonians absorb Sumerians 1900 BC Sumerian/Babylonian Table t
S um of first n numbers
Sum of first n squares
"Pythagore an The orem"
"Pythagore an Triplets", e.g., 3-4-5
some bivariate equations

Egyptians

$6000 \mathcal{B C}$ Multiple symbols for numbers
$3300 \mathcal{B C}$ Developed Hieroglypfics

1850 BC Moscow Papyrus
Volume of truncated pyramid

1650 BC Rfind Papyrus [Afmose]
Binary Multiplication/Division
Sum of 1 to n
Square roots
Line ar equations
Biblicaltiming: Joseph is Governor of Egypt.

Sumerians [modern Iraq]
$8000 \mathcal{B C}$ Sumerian tokens use multiple
symbols to represent numbers
$3100 \mathcal{B C}$ Develop Cune iform writing
$2000 \mathcal{B C}$ Sumerian table t demonstrates:
Gase 10 notation (no zero)
solving line ar equations
simple quadratic equations

Biblical timing: Abrafiam born in the Sumerian city of Ulr

Babylonians

1600 BC Babylonian Tablet
Take square roots
Solve system of n line ar equations

Harrappans [Indus Valley Culture] Pakistan/India
$3500 \mathcal{B C}$ Perfiaps the first writing system?!
$2000 \mathcal{B C} \mathcal{H a d}$ a uniform decimal system of we ights and measures

China

$1200 \mathcal{B C}$ Independent writing system Surprisingly late.
$1200 \mathcal{B C}$ I Ching [Book of changes]
Binary system developed to do numerology.

RGind Papyrus
 s 7 Problems.

\mathcal{A} man fias seventrouses,
Each fouse contains seven cats,
Each cat haskilled seven mice,
Each mouse fiad eaten sevenears of spelt,
Eachear had sevengrains on it. What is the total of all of these?

Sum of first five powers of 7

A Frequently Arising Calculation
$(x-1)\left(1+x^{1}+x^{2}+x^{3}+\ldots+x^{n-2}+x^{n-1}\right)$
$=\quad X^{1}+X^{2}+X^{3}+\ldots \quad+X^{n-1}+X^{n}$

- $1-X^{1}-X^{2}-X^{3}-\ldots-X^{n-2}-X^{n-1}$
$=-1+\quad X^{n}$
$=\quad X^{n}-1$

Action Sfot: $\mathcal{M u l t}$ by X is a $\mathcal{S H} \mathcal{F} \mathcal{F}$

$$
\begin{aligned}
& X\left(1+X^{1}+X^{2}+X^{3}+\ldots \ldots \ldots+X^{n-2}+X^{n-1}\right) \\
& =\quad+X^{1}+X^{2}+X^{3}+\ldots \quad+X^{n-1}+X^{n}
\end{aligned}
$$

The Geometric Series

$$
\begin{aligned}
& (x-1)\left(1+x^{1}+x^{2}+x^{3}+\ldots+x^{n-2}+x^{n-1}\right)=x^{n}-1 \\
& 1+x^{1}+x^{2}+x^{3}+\ldots+x^{n-2}+x^{n-1}=\frac{x^{n}-1}{x-1}
\end{aligned}
$$

when $X \neq 1$

The Geometric Series
When $X=2$

$$
1+2^{1}+2^{2}+2^{3}+\ldots 2^{n-1}=2^{n}-1
$$

$$
1+X^{1}+X^{2}+x^{3}+\ldots+X^{n-2}+X^{n-1}=\frac{x^{n}-1}{x-1}
$$

when $X \neq 1$

The Geometric Series When $X=1 / 2$

$1+1 / 2^{1}+1 / 2^{2}+1 / 2^{3}+\ldots 1 / 2^{n-1}=\left(1 / 2^{n}-1\right) /-1 / 2=2 \cdot(1 / 2)^{n-1}$
$1+x^{1}+x^{2}+x^{3}+\ldots+x^{n-2}+x^{n-1}=\frac{x^{n}-1}{x \cdot 1}$
when $X \neq 1$
when $X \neq 1$

Strings of symbols.

We take the idea of symbol and sequence of symbols as primitive.

Let Σ be any fixed finite set of symbols.
Σ is called an alphabet, or a set of symbols.
Examples:

$$
\begin{aligned}
& \Sigma=\{0,1,2,3,4\} \\
& \Sigma=\{a, b, c, d, \ldots, z\} \\
& \Sigma=\text { all } t y p e \text { writer symbols. } \\
& \Sigma=\{\sigma, \delta, \mathrm{m}, \Omega, . ., \mathfrak{A}\}
\end{aligned}
$$

Strings over the alphabet Σ.
\mathcal{A} string is a sequence of symbols from Σ.

Let s and t be strings. Thenst denotes the concatenation of s and t; i.e., the string obtained by the string s followed by the string t.
\mathcal{N} ow de fine Σ^{+}by these inductive rules:

$$
\chi 2 \Sigma) \quad x 2 \Sigma+
$$

$$
\left.s, t 2 \Sigma^{+}\right) \quad s t 2 \Sigma^{+}
$$

The set Σ^{*}

Define ε be the empty string.
I.e., $X \varepsilon \mathcal{Y}=X \mathcal{Y}$ for all strings X and \mathcal{Y}.
ε is also called the string of length 0

Define $\Sigma^{0}=\{\varepsilon\}$

Define $\Sigma^{*}=\Sigma^{+}[\{\varepsilon\}$
The set Σ^{*}
Define ε be the empty string.
I.e. $X \varepsilon Y=X Y$ for all strings X and Y.
ε is also called the string of length 0.
Define $\Sigma^{0}=\{\varepsilon\}$
Define $\Sigma^{*}=\Sigma^{+}[\{\varepsilon\}$

$\mathcal{B A S} \mathcal{E} X:$

$$
S=a_{n-1}, a_{n-2}, \ldots, a_{0}
$$

represents the number:
$a_{n-1} X^{n-1}+a_{n-2} X^{n-2}+\ldots+a_{0} X^{0}$
Base 2 [Binary \mathcal{N} (otation]
101 represents $1(2)^{2}+0\left(2^{1}\right)+1\left(2^{0}\right)$
OOCOOCOO
Base 7
015 represents $0(7)^{2}+1\left(7^{1}\right)+5\left(7^{0}\right)$

Fundamental Theorem For Binary:
Each of the numbers from 0 to 2^{n-1} is uniquely represented by an n-digit number in binary.

Kuses $\left\lfloor\log _{2} \kappa\right\rfloor+1$ digits in 6ase 2.
Fundamental Theorem For Base X :
Each of the numbers from 0 to $X^{n}-1$ is uniquely represented by an n-digit number in base X.

Kuses $\left\lfloor\log _{\chi} \kappa\right\rfloor+1$ digits in 6ase X.

Egyptian Multiplication a times 6 by repeated doubling

6 fas some n-bit representation: $\sigma_{n} . . \sigma_{0}$
S tarting with a,
repeatedly double largest so far to obtain: $a, 2 a, 4 a, \ldots, 2^{n} a$

Sum together all 2^{k} a where $b_{k}=1$
Egyptian Multiplication 15 times 5
by repeated doubling
5 fas some 3-bit representation: 101

Starting with 15 ,
repeatedly double largest so far to obtain: 15, 30,60

Sum together all $2^{k}(15)$ where $b_{k}=1$:

$$
15+60=75
$$

Why does that work?
$b=b_{0} 2^{0}+b_{1} 2^{1}+b_{2} 2^{2}+\ldots+b_{n} 2^{n}$
$a b=\sigma_{0} 2^{0} a+\sigma_{1} 2^{1} a+\sigma_{2} 2^{2} a+\ldots+\sigma_{n} 2^{n} a$

If 6_{k} is 1 then $2^{k} a$ is in the sum.
Otherwise that term will be 0 .

Egyptian Base Conversion

Output stream will print right to left.
Input X.
Repeat until $X=0$
\{
If X is eventhen Output O; Otherwise $\{X:=X-1$; Output 1$\}$
$x:=x / 2$
\}

Egyptian Base Conversion

Output stre am will print right to left.
Input X.
Repeat until $X=0$
;
If X is even then Output O; Otherwise Output 1
$x:=\lfloor x / 2\rfloor$
\}
Start the algoritfim

Start the algorithm
 1

Repeat until $x=0$
\{ If X is eventhen Output O; Otherwise Output 1;
$x:=\lfloor x / 2\rfloor$
\}
Start the algorithm

01

Repe at until $X=0$
\{ If X is even then Output O; Otherwise Output 1;
$x:=\lfloor x / 2\rfloor$
\}

Start the algorithm

01

Repeat until $X=0$
\{ If X is eventhen Output O; Otherwise Output 1;
$x:=\lfloor x / 2\rfloor$
\}

Start the algorithm

Repe at until $X=0$
\{ If X is even then Output O; Otherwise Output 1;
$x:=\lfloor x / 2\rfloor$
\}

Start the algorithm

0101

Repe at until $X=0$
\{ If X is even then Output O; Otherwise Output 1;
$x:=\lfloor x / 2\rfloor$
\}

Rfind Papyrus $(1650 \mathrm{BC})$
$70^{*} 13$
70
140
280
560
Binary for 13 is $1101=2^{3}+2^{2}+2^{0}$
$70^{*} 13=70^{*} 2^{3}+70^{*} 2^{2}+70^{*} 2^{0}$

Rfind Papyrus (1650 BC)

17	1
34	2
68	4
136	8

$18448 \quad 14$
$184=17^{*} 8+17^{*} 2+14$
$184 / 17=10$ with remainder 14

S tandard Binary Multiplication
$=$ Egyptian Multiplication

