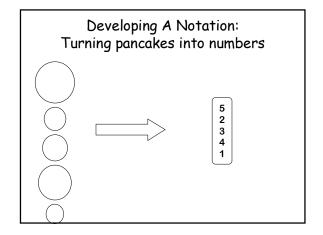
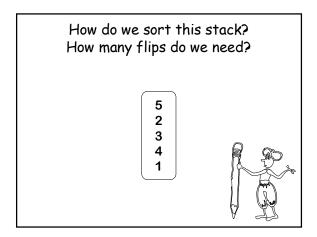
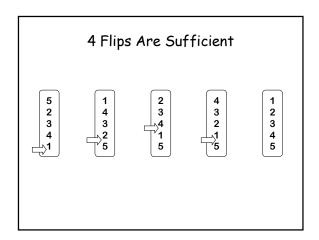


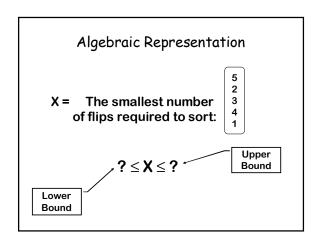
Developing A Notation: Turning pancakes into numbers			
5			
2			
3			

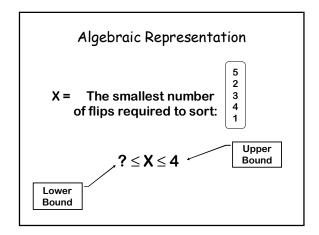
Developing A Notation: Turning pancakes into numbers			
	5		
	2		
	3		
	4		
	1		

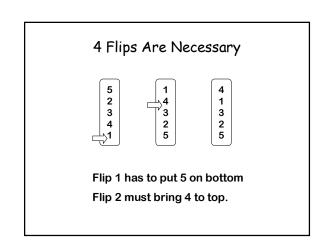


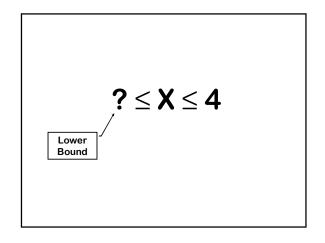


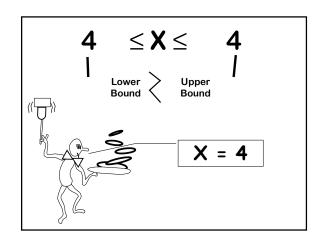


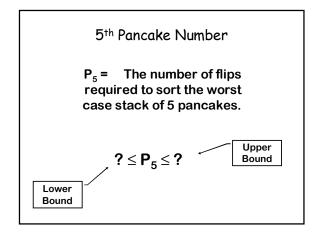


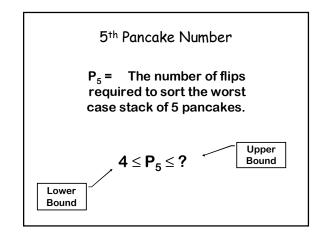


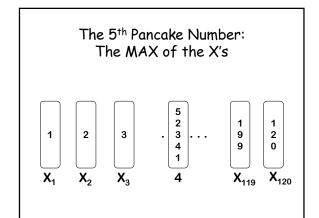


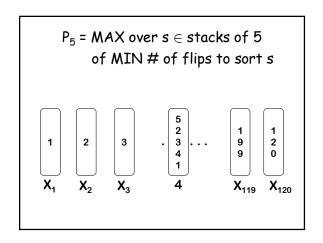


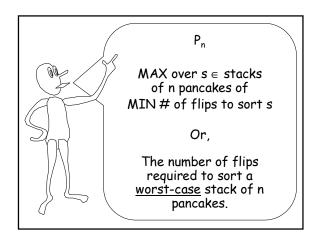


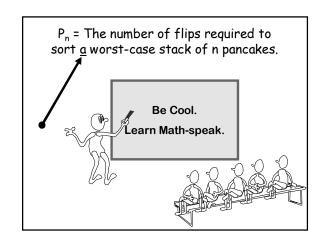


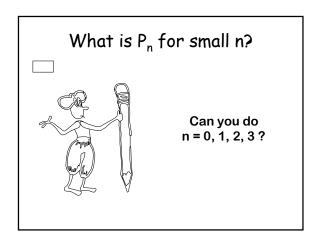


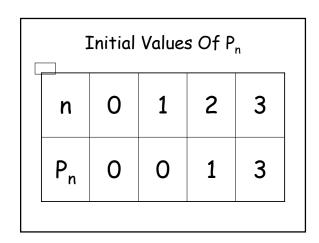


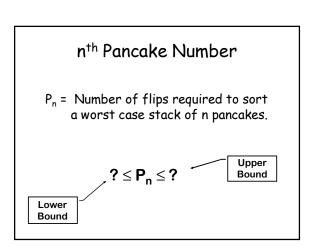


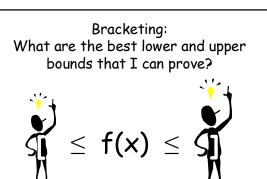


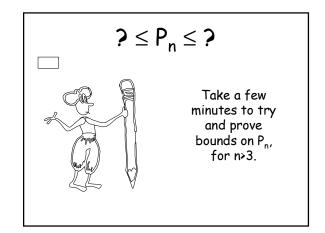


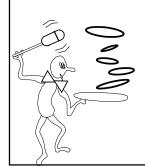












Bring biggest to top. Place it on bottom. Bring next largest to top. Place second from bottom. And so on...

Upper Bound On P_n : Bring To Top Method For n Pancakes

If n=1, no work - we are done.

Else: <u>flip pancake n to top</u> and then <u>flip it to position n</u>.

Now use:

Bring To Top Method For n-1 Pancakes

Total Cost: at most 2(n-1) = 2n - 2 flips.

Better Upper Bound On P_n : Bring To Top Method For n Pancakes

If n=2, use one flip and we are done. Else: flip pancake n to top and then flip it to position n.

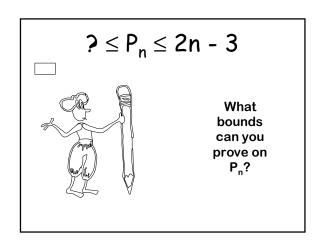
Now use:

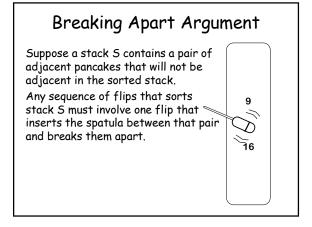
Bring To Top Method For n-1 Pancakes

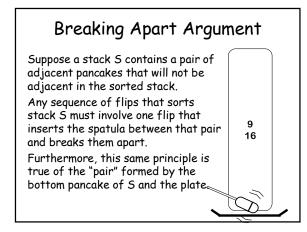
Total Cost: at most 2(n-2) + 1 = 2n - 3 flips.

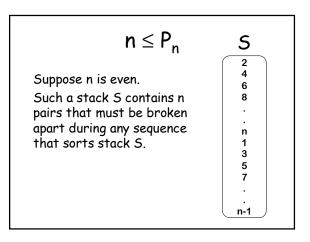
Bring to top not always optimal for a particular stack

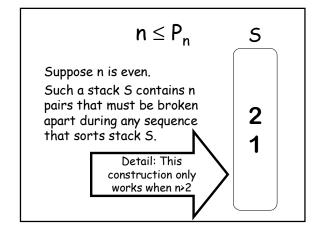
5 flips, but can be done in 4 flips

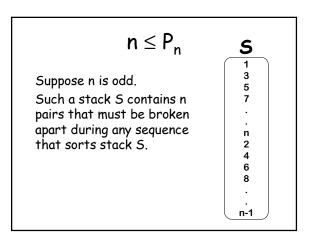


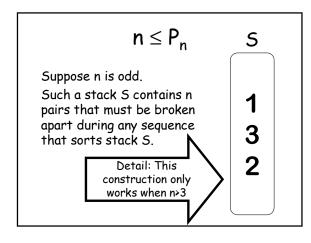


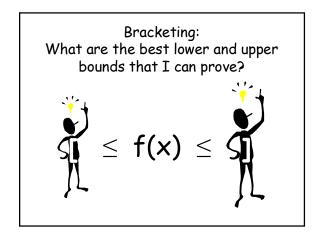


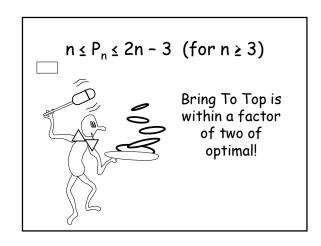


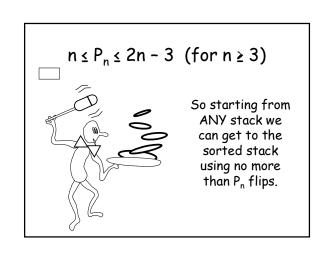


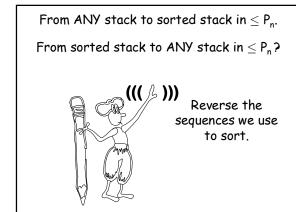












From ANY stack to sorted stack in $\leq P_n.$ From sorted stack to ANY stack in $\leq P_n.$ Hence, From ANY stack to ANY stack in $\leq 2P_n.$

From ANY stack to ANY stack in $\leq 2P_n$.

Can you find a faster way than 2P_n flips to go from ANY to ANY? From ANY Stack S to ANY stack T in $\leq P_n$

Rename the pancakes in S to be 1,2,3,...,n. Rewrite T using the new naming scheme that you used for S. T will be some list: $\pi(1),\pi(2),...,\pi(n)$. The sequence of flips that brings the sorted stack to $\pi(1),\pi(2),...,\pi(n)$ will bring S to T.

5: 4,3,5,1,2 1,2,3,4,5

T: 5,2,4,3,1 3,5,1,2,4

The Known Pancake Numbers

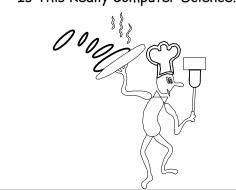
n	1 2 3 4 5 6 7 8 9 10	P _n	0 1 3 4 5 7 8 9 10 11 13 14 15
	12		13 14
	13		15

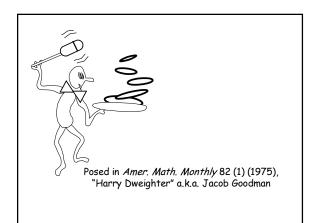
P₁₄ Is Unknown

14! Orderings of 14 pancakes.

14! = 87,178,291,200

Is This Really Computer Science?





(17/16)n $\leq P_n \leq (5n+5)/3$

Bill Gates & Christos Papadimitriou:

Bounds For Sorting By Prefix Reversal.

Discrete Mathematics, vol 27, pp 47-57, 1979.

$(15/14)n \le P_n \le (5n+5)/3$

H. Heydari & Ivan H. Sudborough.

On the Diameter of the Pancake Network.

Journal of Algorithms, vol 25,
pp 67-94, 1997.

Permutation

Any particular ordering of all n elements of an n element set S is called a permutation on the set S.

Each different stack of n pancakes is one of the permutations on [1..n].

Permutation

Any particular ordering of all n elements of an n element set S is called a permutation on the set S.

Example: $S = \{1, 2, 3, 4, 5\}$ Example permutation: 5 3 2 4 1120 possible permutations on S

Ultra-Useful Fact

There are n! = 1*2*3*4*...*n permutations on n elements.

Proof by induction on n. IH: There are (n-1)! permutations of n-1 elements.

Let \mathbf{S}_i be all permutations on n elements that start with element i. By I,H, each \mathbf{S}_i has size (n-1)!

Each permutation on n elements is mentioned exactly once in union of the S_i 's. Hence there are $n^*(n-1)! = n!$ permutations on n elements.

Representing A Permutation

We have many choices of how to specify a permutation on S. Here are two methods:

- List a sequence of all elements of [1..n], each one written exactly once.
 Ex: 6 4 5 2 1 3
- 2) Give a function π on S s.t. $\pi(1)$ $\pi(2)$ $\pi(3)$.. $\pi(n)$ is a sequence listing [1..n], each one exactly once. Ex: $\pi(1)$ =6 $\pi(2)$ =4 $\pi(3)$ = 5 $\pi(4)$ = 2 $\pi(4)$ = 1 $\pi(6)$ =3

A Permutation is a NOUN

An ordering S of a stack of pancakes is a permutation.

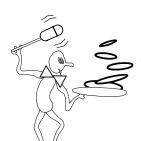
A Permutation is a NOUN A Permutation can also be a VERB

An ordering S of a stack of pancakes is a permutation.

We can permute S to obtain a new stack S'.

<u>Permute</u> also means to rearrange so as to obtain a permutation of the original.

Permute A Permutation.



I start with a permutation S of pancakes.

I continue to use a flip operation to permute my current permutation, so as to obtain the sorted permutation.

FORMALLY

NOUN

VERB

A permutation π of a set S is a 1,1 onto function from S to S.

Let π and π' be permutations. We can compose them to get new ones:

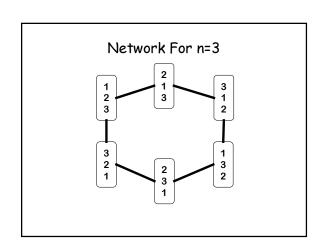
 $\pi(\pi'(x))$ and/or $\pi'(\pi(x))$

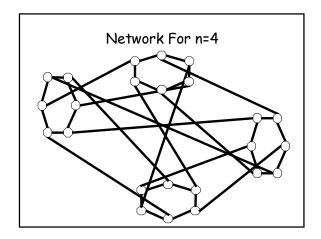
Pancake Network

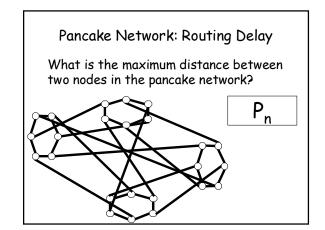
This network has n! nodes

Assign each node the name of one of the possible n! stacks of pancakes.

Put a wire between two nodes if they are one flip apart.



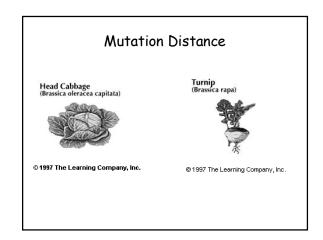


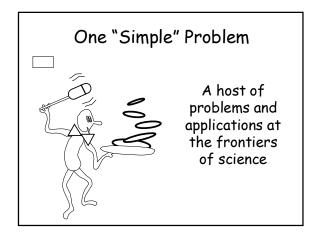


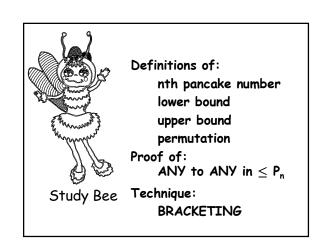
Pancake Network: Reliability

If up to n-2 nodes get hit by lightning the network remains connected, even though each node is connected to only n-1 other nodes.

The Pancake Network is optimally reliable for its number of edges and nodes.







High Level Point

This lecture is a microcosm of mathematical modeling and optimization.

References

Bill Gates & Christos Papadimitriou: Bounds For Sorting By Prefix Reversal. Discrete Mathematics, vol 27, pp 47-57, 1979.

H. Heydari & H. I. Sudborough: On the Diameter of the Pancake Network. *Journal of Algorithms,* vol 25, pp 67-94, 1997