

Steven Rudich

Lecture 3

Jan 18, 2005

CS 15-251

Spring 2005

Carnegie Mellon University

Pancakes With A Problem!

Please feel free

The chef at our place is sloppy, and when he prepares a stack of pancakes they come out all different sizes.

Therefore, when I deliver them to a customer, on the way to the table I rearrange them (so that the smallest winds up on top, and so on, down to the largest at the bottom).

I do this by grabbing several from the top and flipping them over, repeating this (varying the number I flip) as many times as necessary.

5 3

How do we sort this stack? How many flips do we need?

4 Flips Are Sufficient

Algebraic Representation

X = The smallest number of flips required to sort:

? ≤ X ≤ ?

Upper Bound

Lower Bound

Algebraic Representation

X = The smallest number of flips required to sort:

? ≤ X ≤ 4

Upper Bound

Lower Bound

4 Flips Are Necessary

Flip 1 has to put 5 on bottom Flip 2 must bring 4 to top. ? ≤ X ≤ 4

Lower Bound

5th Pancake Number

 P_5 = The number of flips required to sort the worst case stack of 5 pancakes.

 $? \le P_5 \le ?$

Upper Bound

Lower Bound

5th Pancake Number

 P_5 = The number of flips required to sort the worst case stack of 5 pancakes.

 $4 \le P_5 \le ?$

Upper Bound

Lower Bound

The 5th Pancake Number: The MAX of the X's

$P_5 = MAX$ over $s \in stacks$ of 5 of MIN # of flips to sort s

Pn

MAX over $s \in stacks$ of n pancakes of MIN # of flips to sort s

Or,

The number of flips required to sort a worst-case stack of n pancakes.

What is P_n for small n?

Can you do n = 0, 1, 2, 3?

Initial Values Of P_n

n	0	1	2	3
Pn	0	0	1	3

$$P_3 = 3$$

1 3 2 requires 3 Flips, hence $P_3 \ge 3$.

ANY stack of 3 can be done in 3 flips. Get the big one to the bottom (\leq 2 flips). Use \leq 1 more flip to handle the top two. Hence, $P_3 \leq 3$.

nth Pancake Number

 P_n = Number of flips required to sort a worst case stack of n pancakes.

$$? \leq P_n \leq ?$$

Upper Bound

Lower Bound

Bracketing:

What are the best lower and upper bounds that I can prove?

$? \leq P_n \leq ?$

Take a few minutes to try and prove bounds on P_n, for n>3.

Bring To Top Method

Bring biggest to top. Place it on bottom. Bring next largest to top. Place second from bottom. And so on...

Upper Bound On P_n: Bring To Top Method For n Pancakes

If n=1, no work - we are done.

Else: <u>flip pancake n to top</u> and then <u>flip it to position n</u>.

Now use:

Bring To Top Method For n-1 Pancakes

Total Cost: at most 2(n-1) = 2n - 2 flips.

Better Upper Bound On P_n: Bring To Top Method For n Pancakes

If n=2, use one flip and we are done.

Else: flip pancake n to top and then flip it to position n.

Now use:

Bring To Top Method For n-1 Pancakes

Total Cost: at most 2(n-2) + 1 = 2n - 3 flips.

Bring to top not always optimal for a particular stack

5 flips, but can be done in 4 flips

$2 \le P_n \le 2n - 3$

What bounds can you prove on P_n ?

Breaking Apart Argument

Suppose a stack S contains a pair of adjacent pancakes that will not be adjacent in the sorted stack.

Any sequence of flips that sorts stack S must involve one flip that inserts the spatula between that pair and breaks them apart.

9

Breaking Apart Argument

Suppose a stack S contains a pair of adjacent pancakes that will not be adjacent in the sorted stack.

Any sequence of flips that sorts stack S must involve one flip that inserts the spatula between that pair and breaks them apart.

Furthermore, this same principle is true of the "pair" formed by the bottom pancake of S and the plate.

9 16

$n \leq P_n$

Suppose n is even.

Such a stack S contains n pairs that must be broken apart during any sequence that sorts stack S.

S

 $n \leq P_n$

S

Suppose n is even.

Such a stack S contains n pairs that must be broken apart during any sequence that sorts stack S.

Detail: This construction only works when n>2

 $n \leq P_n$

Suppose n is odd.

Such a stack S contains n pairs that must be broken apart during any sequence that sorts stack S.

5

 $n \leq P_n$

S

Suppose n is odd.

Such a stack S contains n pairs that must be broken apart during any sequence that sorts stack S.

Detail: This construction only works when n>3

1

Bracketing:

What are the best lower and upper bounds that I can prove?

$n \le P_n \le 2n - 3$ (for $n \ge 3$)

Bring To Top is within a factor of two of optimal!

$n \le P_n \le 2n - 3$ (for $n \ge 3$)

So starting from ANY stack we can get to the sorted stack using no more than P_n flips.

From ANY stack to sorted stack in $\leq P_n$.

From sorted stack to ANY stack in $\leq P_n$?

Reverse the sequences we use to sort.

From ANY stack to sorted stack in $\leq P_n$.

From sorted stack to ANY stack in $\leq P_n$.

Hence,

From ANY stack to ANY stack in $\leq 2P_n$.

From ANY stack to ANY stack in $\leq 2P_n$.

Can you find a faster way than $2P_n$ flips to go from ANY to ANY?

From ANY Stack S to ANY stack T in $\leq P_n$

Rename the pancakes in S to be 1,2,3,...,n. Rewrite T using the new naming scheme that you used for S. T will be some list: $\pi(1),\pi(2),...,\pi(n)$. The sequence of flips that brings the sorted stack to $\pi(1),\pi(2),...,\pi(n)$ will bring S to T.

5: 4,3,5,1,2 1,2,3,4,5 T: 5,2,4,3,1 3,5,1,2,4

The Known Pancake Numbers

n		P	
	1	• n	O
	1 2 3 4 5 6 7 8 9 10		0 1 3 4 5 7 8 9
	3		3
	4		4
	5		5
	6		7
	7		Ω
	0		0
	Ö		
	9		10
			11
	11		10 11 13 14
	12		14
	12 13		15

P₁₄ Is Unknown

14! Orderings of 14 pancakes.

14! = 87,178,291,200

Is This Really Computer Science?

Posed in Amer. Math. Monthly 82 (1) (1975), "Harry Dweighter" a.k.a. Jacob Goodman

$(17/16)n \le P_n \le (5n+5)/3$

Bill Gates & Christos Papadimitriou:

Bounds For Sorting By Prefix Reversal.

Discrete
Mathematics,
vol 27, pp 47-57,
1979.

$(15/14)n \le P_n \le (5n+5)/3$

H. Heydari & Ivan H. Sudborough.

On the Diameter of the Pancake Network.

Journal of Algorithms, vol 25, pp 67-94, 1997.

Permutation

Any particular ordering of all n elements of an n element set S is called a permutation on the set S.

Each different stack of n pancakes is one of the permutations on [1..n].

Permutation

Any particular ordering of all n elements of an n element set S is called a permutation on the set S.

Example:

 $S = \{1, 2, 3, 4, 5\}$

Example permutation:

53241

120 possible permutations on S

Ultra-Useful Fact

There are n! = 1*2*3*4*...*n permutations on n elements.

Proof by induction on n. IH: There are (n-1)! permutations of n-1 elements.

Let S_i be all permutations on n elements that start with element i. By I,H, each S_i has size (n-1)!

Each permutation on n elements is mentioned exactly once in union of the S_i 's. Hence there are $n^*(n-1)! = n!$ permutations on n elements.

Representing A Permutation

We have many choices of how to specify a permutation on S. Here are two methods:

- 1) List a sequence of all elements of [1..n], each one written exactly once. Ex: 6 4 5 2 1 3
- 2) Give a function π on S s.t. $\pi(1)$ $\pi(2)$ $\pi(3)$.. $\pi(n)$ is a sequence listing [1..n], each one exactly once. Ex: $\pi(1)=6$ $\pi(2)=4$ $\pi(3)=5$ $\pi(4)=2$ $\pi(4)=1$ $\pi(6)=3$

A Permutation is a NOUN

An ordering S of a stack of pancakes is a permutation.

A Permutation is a NOUN A Permutation can also be a VERB

An ordering S of a stack of pancakes is a permutation.

We can permute S to obtain a new stack S'.

<u>Permute</u> also means to rearrange so as to obtain a permutation of the original.

Permute A Permutation.

I start with a permutation S of pancakes.

I continue to use a flip operation to permute my current permutation, so as to obtain the sorted permutation.

FORMALLY

NOUN

VERB

A permutation π of a set S is a 1,1 onto function from S to S.

Let π and π' be permutations. We can compose them to get new ones:

 $\pi(\pi'(x))$ and/or $\pi'(\pi(x))$

Pancake Network

This network has n! nodes

Assign each node the name of one of the possible n! stacks of pancakes.

Put a wire between two nodes if they are one flip apart.

Network For n=3

Network For n=4

Pancake Network: Routing Delay

What is the maximum distance between two nodes in the pancake network?

Pancake Network: Reliability

If up to n-2 nodes get hit by lightning the network remains connected, even though each node is connected to only n-1 other nodes.

The Pancake Network is optimally reliable for its number of edges and nodes.

Mutation Distance

One "Simple" Problem

A host of problems and applications at the frontiers of science

Definitions of:

nth pancake number lower bound upper bound permutation

Proof of: ANY to ANY in $\leq P_n$

Technique: BRACKETING

High Level Point

This lecture is a microcosm of mathematical modeling and optimization.

References

Bill Gates & Christos Papadimitriou: Bounds For Sorting By Prefix Reversal. Discrete Mathematics, vol 27, pp 47-57, 1979.

H. Heydari & H. I. Sudborough: On the Diameter of the Pancake Network. Journal of Algorithms, vol 25, pp 67-94, 1997