
1

Induction II:
Inductive Pictures

Carnegie Mellon UniversityJan 13, 2005Lecture 2
CS 15-251       Spring 2005Steven Rudich

Great Theoretical Ideas In Computer Science

Inductive Proof:
“Standard” Induction

“Least Counter-example”
“All Previous” Induction 

Inductive Definition:
Recurrences

Recursive Programming

Theorem? (k¸0)
1+2+4+8+…+2k = 2k+1 -1

Try it out on small 
examples:
20 = 21 -1
20 + 21 = 22 -1
20 + 21 + 22 = 23 -1

Sk´ “1+2+4+8+…+2k = 2k+1 -1”
Use induction to prove ∀k¸0, Sk

Establish “Base Case”: S0. We have already 
check it.

Establish “Domino Property”: ∀k¸0, Sk ) Sk+1

“Inductive Hypothesis” Sk:
1+2+4+8+…+2k = 2k+1 -1

Add 2k+1 to both sides:
1+2+4+8+…+2k + 2k+1= 2k+1 +2k+1 -1
1+2+4+8+…+2k + 2k+1= 2k+2 -1

FUNDAMENTAL 
LEMMA OF THE 
POWERS OF TWO:

The sum of the first 
n powers of 2, is one 
less than the next 
power of 2.

Yet another way of packaging 
inductive reasoning is to 

define an “invariant”.

Invariant (adj.)
1. Not varying; constant.

2. (mathematics) Unaffected by 
a designated operation, as a 
transformation of coordinates.



2

Yet another way of packaging 
inductive reasoning is to 

define an “invariant”.

Invariant (adj.)

3. (programming) A rule, such as the 
ordering an ordered list or heap, 
that applies throughout the life of 
a data structure or procedure. 

Each change to the data structure
must maintain the correctness of 
the invariant.

Invariant Induction
Suppose we have a time varying world 

state: W0, W1, W2, …
Each state change is assumed to come 
from a list of permissible operations. 
We seek to prove that statement S is 

true of all future worlds. 

Argue that S is true of the initial world.

Show that if S is true of some  world – then S 
remains true after one permissible operation is 
performed.

Odd/Even Handshaking Theorem: 
At any party, at any point in time, define a 
person’s parity as ODD/EVEN according to 

the number of hands they have shaken.
Statement: The number of people of odd 

parity must be even.

Initial case: Zero hands have been shaken at the 
start of a party, so zero people have odd parity .

If 2 people of different parities shake, then they 
both swap parities and the odd parity count is 
unchanged. 
If 2 people of the same parity shake, they both 
change. But then the odd parity count changes by 2, 
and remains even. 

Inductive Definition 
of n! 

[said n “factorial”]

0! = 1; n! = n*(n-1)!

0! = 1; n! = n*(n-1)!

F:=1;
For x = 1 to n do

F:=F*x;
Return F

Program for n! ? 

0! = 1; n! = n*(n-1)!

F:=1;
For x = 1 to n do

F:=F*x;
Return F

Program for n! ? 

n=0 returns 1
n=1 returns 1
n=2 returns 2



3

0! = 1; n! = n*(n-1)!

F:=1;
For x = 1 to n do

F:=F*x;
Return F

Loop Invariant: F=x!
True for x=0. If true after 
k times through – true 
after k+1 times through.

Inductive Definition of T(n)

T(1) = 1
T(n) =  4T(n/2) + n

Notice that T(n) is inductively defined 
for positive powers of 2, and undefined 
on other values.

Inductive Definition of T(n)

T(1) = 1
T(n) =  4T(n/2) + n

Notice that T(n) is inductively defined 
for positive powers of 2, and undefined 
on other values.

T(1)=1 T(2)=6 T(4)=28 T(8)=120

Guess a closed form formula for T(n).
Guess G(n)

G(n) = 2n2 - n
Let the domain of G be the powers of two.

Two equivalent functions?

G(n) = 2n2 - n
Let the domain of G be the powers of two.

T(1) = 1
T(n) = 4 T(n/2) + n
Domain of T are the powers of two.

Inductive Proof of Equivalence

Base: G(1) = 1 and T(1) = 1

Induction Hypothesis:
T(x) = G(x) for x < n

Hence: T(n/2) = G(n/2) = 2(n/2)2 – n/2

T(n) = 4 T(n/2) + n
= 4 G(n/2) + n

= 4 [2(n/2)2 – n/2] + n
= 2n2 – 2n + n
= 2n2 – n
= G(n)

G(n) = 2n2 - n

T(1) = 1
T(n) = 4 T(n/2) + n



4

We inductively proved the 
assertion that 

G(n) =T(n). 

Giving a formula for T 
with no sums or 

recurrences is called 
solving the recurrence T.

Solving Recurrences
Guess and Verify

Guess: G(n) = 2n2 – n

Verify: G(1) = 1 and G(n) = 4 G(n/2) + n

Similarly:T(1) = 1 and T(n) = 4 T(n/2) + n

So T(n) = G(n)

Technique 2
Guess Form and Calculate Coefficients

Guess: T(n) = an2 + bn + c for some a,b,c

Calculate: T(1) = 1 ⇒ a + b + c = 1

T(n) = 4 T(n/2) + n 
⇒ an2 + bn + c = 4 [a(n/2)2 + b(n/2) + c] + n

= an2 + 2bn + 4c + n 
⇒ (b+1)n + 3c = 0

Therefore: b=-1     c=0     a=2

A computer scientist not 
only deals with numbers, 

but also with

•Finite Strings of symbols
•Very visual objects called 

graphs
•And especially, especially 
the special graphs called 

trees

GRAPHS

b

roota

Definition: Graphs

A graph G = (V,E) consists of a finite 
set V of vertices (nodes) and a finite 
set E of edges. Each edge is a set {a, b} 
of two different vertices. 

A graph may not have self loops or 
multiple edges. 



5

Definition: Directed Graphs

A graph G = (V,E) consists of a finite 
set V of vertices (nodes) and a finite 
set E of edges. Each edge is an ordered
pair <a,b> of two different vertices. 

Unless we say otherwise, our directed 
graphs will not have multi-edges, or self 
loops. 

Definition: Tree
A tree is a directed graph with one special node called 
the root and the property that each node must a 
unique path from the root to itself. 

Child: If <u,v>2E, we sav is a child of u
Parent: If <u,v>2E, we say u is the parent of u
Leaf: If u has no children, we say u is leaf.
Siblings: If u and v have the same parent, they are 
siblings.
Descendants of u: The set of nodes reachable from u 
(including u). 
Sub-tree rooted at u: Descendants of u and all the 
edges between them where u has been designated as a 
root.

Classic Visualization: Tree

Inductive rule:
If G is a single node

Viz(G) =

If G consists of root r with sub-trees 
T1, T2, …, Tk

Viz(G) =
Vuz(T1) Viz(T2) Viz(Tk)

…..

I own 3 beanies and 2 ties. 
How many beanie/tie combos 

might I wear to the ball 
tonight? 

A choice tree is a tree with an 
object called a “choice” associated 
with each edge and a label on each 

leaf.

Choice Tree



6

Definition: Labeled Tree

A tree  node labeled by S is a tree T = 
<V,E> with an associated function
Label1: V to S 

A tree  edge labeled by S is a tree T = 
<V,E> with an associated function
Label2: E to S

was very illuminating.

Let’s do something similar to 
illuminate the nature of 
T(1)=1; T(n)= 4T(n/2) + n

T(1)=1; T(n)= 4T(n/2) + n

For each n (power of 2),
we will define a tree W(n) node 

labeled by Natural numbers. 
W(n) will give us an incisive 

picture of T(n).

Inductive Definition Of Labeled Tree W(n)
T(n)              =              n + 4 T(n/2)

n

W(n/2) W(n/2) W(n/2) W(n/2)

W(n) =

W(1)

T(1)              =              1

1=

Inductive Definition Of Labeled Tree W(n)
T(2)              =              6

2W(2) =

W(1)

T(1)              =              1

1=

1 1 1 1

Inductive Definition Of Labeled Tree W(n)
T(4)              =              28

4W(4) =

2

1 1 1 1

2

1 1 1 1

2

1 1 1 1

2

1 1 1 1



7

Inductive Definition Of Labeled Tree W(n)
T(4)              =              28

4W(4) =

2

1 1 1 1

2

1 1 1 1

2

1 1 1 1

2

1 1 1 1

NOTE: When we sum 
all the node labels on 

W(n), we get T(n)

Invariant: LabelSum W(n) = T(n)
T(n)              =              n + 4 T(n/2)

n

W(n/2) W(n/2) W(n/2) W(n/2)

W(n) =

W(1)

T(1)              =              1

1=

n

W(n/2) W(n/2) W(n/2) W(n/2)

W(n) = n

W(n/2) W(n/2) W(n/2)

W(n) =

n/2

W(n/4)W(n/4)W(n/4)W(n/4)

nW(n) =

n/2

W(n/4)W(n/4)W(n/4)W(n/4)

n/2

W(n/4)W(n/4)W(n/4)W(n/4)

n/2

W(n/4)W(n/4)W(n/4)W(n/4)

n/2

W(n/4)W(n/4)W(n/4)W(n/4)

nW(n) =

n/2 n/2 n/2n/2

11111111111111111111111111111111 . . . . . . 111111111111111111111111111111111

n/4 n/4 n/4n/4n/4n/4n/4n/4n/4n/4n/4n/4n/4n/4n/4 n/4



8

Level i is the sum of 4i copies of n/2i

1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1

. . . . . . . . . . . . . . . . . . . . . . . . . . 

n/2         +        n/2        +         n/2    +         n/2

n

n/4 + n/4 + n/4 + n/4 + n/4 + n/4 + n/4 + n/4 + n/4 + n/4 + n/4 + n/4 + n/4 + n/4 + n/4 + n/4

0

1

2

i

log n2

= 1n

= 2n

= 4n

= 2in

= (n)n

n(1+2+4+8+ . . . +n) =          n(2n-1) =                   2n2-n

Level i is the sum of 4 i copies of n/2i

1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1

. . . . . . . . . . . . . . . . . . . . . . . . . . 

n/2         + n/2        +         n/2          +     n/2

n

n/4 + n/4 + n/4 + n/4 + n/4 + n/4 + n/4 + n/4 + n/4 + n/4 + n/4 + n/4 + n/4 + n/4 + n/4 + n/4

0

1

2

i

log n2

Instead of 
T(1)=1; T(n)= 4T(n/2) + n

We could illuminate
T(1)=1; T(n) = 2T(n/2) + n

T(n)              =              n + 2 T(n/2)

n

W(n/2) W(n/2)

W(n) =

W(1)

T(1)              =              1

1=

Level i is the sum of 2i copies of n/2i

1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1

. . . . . . . . . . . . . . . . . . . . . . . . . . 

n/2         +        n/2

n
0

1

2

i

log n2

n

n

. . . . . . . . . . . . . . . . . . . . . . . . . . 

n

n
0

1

2

i

log n2



9

T(1)=1; T(n) = 2T(n/2) + n

Has closed form: nlog2(n) 
where n is a power of 2

Representing a recurrence 
relation as a labeled tree is one 

of the basics tools you will 
have to put recurrence 
relations in closed form.

The Lindenmayer  Game

Σ = {a,b}
Start word: a

SUB(a) = ab SUB(b) = a
For each w = w1 w2 … wn

NEXT(w) = SUB(w1)SUB(w2)..SUB(w n)

The Lindenmayer  Game

SUB(a) = ab SUB(b) = a
For each w = w 1 w2 … wn
NEXT(w) = SUB(w 1)SUB(w 2)..SUB(w n)

Time 1: a
Time 2: ab
Time 3: aba
Time 4: abaab
Time 5: abaababa

The Lindenmayer  Game

SUB(a) = ab SUB(b) = a
For each w = w 1 w2 … wn
NEXT(w) = SUB(w 1)SUB(w 2)..SUB(w n)

Time 1: a
Time 2: ab
Time 3: aba
Time 4: abaab
Time 5: abaababa

How long are 
the strings as a 

function of 
time?

Aristid Lindenmayer (1925-1989)

1968 Invents L-systems in Theoretical Botany

Time 1: a
Time 2: ab
Time 3: aba
Time 4: abaab
Time 5: abaababa FIBONACCI(n) 

cells at time n



10

The Koch  Game

Σ = {F,+,-}
Start word: F

SUB(F) = F+F--F+F  SUB(+)=+ SUB(-)=-
For each w = w1 w2 … wn

NEXT(w) = SUB(w1)SUB(w2)..SUB(w n)

The Koch  Game

Gen 0:F
Gen 1: F+F--F+F
Gen 2: F+F--F+F+F+F--F+F--F+F--F+F+F+F--F+F 

The Koch  Game

Picture representation: 

F draw forward one unit
+ turn 60 degree left   
- turn 60 degrees right.

Gen 0: F
Gen 1: F+F--F+F
Gen 2: F+F--F+F+F+F--F+F--F+F--F+F+F+F--F+F 

The Koch  Game

F+F--F+F

The Koch Game

F+F--F+F+F+F--F+F--F+F--F+F+F+F--F+F 
Koch  Curve



11

Dragon Game

SUB(X) =X+YF+
SUB(Y) = -FX-Y

Dragon Curve:

Hilbert Game
SUB(L)=  +RF-LFL-FR+
SUB(R)= -LF+RFR+FL-

Hilbert Curve:

Note: Make 90 
degree turns instead 
of 60 degrees.

Hilbert’s Space Filling Curve Peano-Gossamer Curve

Sierpinski Triangle Lindenmayer 1968

SUB(F) =  F[-F]F[+F][F]

Interpret the stuff inside 
brackets as a branch.



12

Lindenmayer 1968 Inductive Leaf


