Great Theoretical Ideas In Computer Science
StevenRudich
CS 15-251 Spring 2005
Lecture 2

$$
\operatorname{Ian} 13,2005
$$

Carne gie Me Klon University

Induction II:
Inductive Pictures

Inductive Proof:
-Standard" Induction "Least Counter-e xample" "All Previous" Induction

Inductive De finition:

 RecurrencesRecursive Programming

$$
\begin{aligned}
& \text { Theorem? }(\mathbb{K}, 0) \\
& 1+2+4+8+\ldots+2^{k}=2^{k+1}-1
\end{aligned}
$$

Try it out on small examples:
2^{0}
$=2^{1}-1$
$2^{0}+2^{1}$
$=2^{2}-1$
$2^{0}+2^{1}+2^{2}=2^{3}-1$
$S_{k}{ }^{\prime} \quad " 1+2+4+8+. .+2^{\kappa}=2^{\kappa+1}-1 "$ Use induction to prove $\forall K, 0, S_{\kappa}$

Establish "Base Case": So. We have already
check it.

Establish "Domino Property": $\forall K, 0, \mathcal{S}_{K}$) \mathcal{S}_{K+1}
"Inductive Hypothesis" S_{K} :
$1+2+4+8+. .+2^{k}=2^{k+1}-1$
$\mathscr{A d} d 2^{\kappa+1}$ to Goth sides:
$1+2+4+8+. .+2^{\kappa}+2^{k+1}=2^{k+1}+2^{k+1}-1$
$1+2+4+8+\ldots+2^{k}+2^{k+1}=2^{k+2}-1$

FUNDAMENIAL LEMMA OF $\mathcal{T H E}$ PO HERS OF THO:

The sum of the first n powers of 2 , is one Less than the next power of 2 .

Yet another way of packaging inductive reasoning is to define an "invariant".

Invariant (adj.)

1. Not varying; constant.
2. (mathematics) Unaffected by a designated operation, as a transformation of coordinates.

Yet another way of packaging inductive reasoning is to define an "invariant".

Invariant (adj.)
3. (programming) \mathcal{A} rule, such as the ordering an ordered list or heap, that applies throughout the life of a data structure or procedure.

Each change to the data structure must maintain the correctness of the invariant.

Invariant Induction

Suppose we fave a time varying world state: $\mathcal{W}_{0}, \mathcal{W}_{1}, \mathcal{W}_{2}, \ldots$
Each state change is assumed to come from a list of permissible operations. We seek to prove that statement S is true of all future worlds.

Argue that S is true of the initial world.

Show that if S is true of some world -then S remains true after one permissible operation is performed.

Odd/Even Handshaking The orem:

At any party, at any point in time, de fine a person's parity as $O \mathcal{D D} / E \mathcal{E} \mathcal{N}$ according to the number of hands they have shaken. Statement: The number of people of odd parity must be even.

Initial case: Zero hands have been shaken at the start of a party, so zero people fiave odd parity.

If 2 people of different parities shake, then they Goth swap parities and the odd parity count is unchanged.
If 2 people of the same parity shake, they 6 oth change. But then the odd parity count changes by 2 , and remains even.

$$
\begin{gathered}
\text { Inductive De finition } \\
\text { of } n \text { ! } \\
0!=1 ; n!=n^{*}(n-1)!
\end{gathered}
$$

$$
0!=1 ; n!=n^{*}(n-1)!
$$

$\mathcal{F}:=1 ;$
For $x=1$ to n do

$$
\mathcal{F}:=\mathcal{F}^{*} \chi ;
$$

Return \mathcal{F}

Program for n!?

$$
0!=1 ; n!=n^{*}(n-1)!
$$

$\mathcal{F}:=1 ;$
For $x=1$ to n do

$$
\mathcal{F}:=\mathcal{F}^{*} \chi ; n=0 \text { returns } 1
$$

Return \mathcal{F} $\begin{array}{lll}n=1 & \text { returns } & 1 \\ n=2 & \text { returns } & 2\end{array}$
Program for n!?

$$
\begin{aligned}
& \quad 0!=1 ; n!=n^{*}(n-1)! \\
& \mathcal{F}:=1 ; \\
& \text { For } x=1 \text { to } n d o \\
& \text { F:= } \mathcal{F}^{*} x ; \\
& \text { Return } \mathcal{F} \\
& \text { Loop Invariant: Fix! } \\
& \text { True for x=0. If true after } \\
& \text { K times through -true } \\
& \text { after K+1 times through. }
\end{aligned}
$$

Inductive Definition of $\mathcal{T}(n)$

$\mathcal{T}(1)=1$
$\mathcal{T}(n)=4 \mathcal{T}(n / 2)+n$

Notice that $\mathcal{T}(n)$ is inductively defined for positive powers of 2 , and unde fine d on other values.

Inductive Definition of $\mathcal{T}(n)$

$\mathcal{T}(1)=1$
$\mathcal{T}(n)=4 \mathcal{T}(n / 2)+n$

Notice that $\mathcal{T}(n)$ is inductively defined for positive powers of 2 , and unde fined on other values.

$$
\mathcal{T}(1)=1 \quad \mathcal{T}(2)=6 \quad \mathcal{T}(4)=28 \quad \mathcal{T}(8)=120
$$

Guess a closed form formula for $\mathcal{T}(n)$.
Guess $\mathcal{G}(n)$
$\mathcal{G}(n)=2 n^{2} \cdot n$
Let the domain of \mathcal{G} be the powers of two.

Two equivalent functions?

$\mathcal{G}(n)=2 n^{2} \cdot n$
Let the domain of G be the powers of two.
$\mathcal{T}(1)=1$
$\mathcal{T}(n)=4 \mathcal{T}(n / 2)+n$
Domain of \mathcal{T} are the powers of two.

Inductive Proof of Equivalence

Base : $\mathcal{G}(1)=1$ and $\mathcal{T}(1)=1$
Induction Hypothes is:

$$
\mathcal{T}(x)=\mathcal{G}(x) \text { for } x<n
$$

$\mathcal{H e n c e}: \mathcal{T}(n / 2)=\mathcal{G}(n / 2)=2(n / 2)^{2}-n / 2$

$$
\begin{aligned}
T(n) & =4 \mathcal{T}(n / 2)+n \\
& =4 G(n / 2)+n \\
& =4\left[2(n / 2)^{2}-n / 2\right]+n \\
& =2 n^{2}-2 n+n \\
& =2 n^{2}-n \\
& =G(n)
\end{aligned}
$$

$$
\begin{aligned}
& G(n)=2 n^{2} \cdot n \\
& \mathcal{T}(1)=1 \\
& \mathcal{T}(n)=4 T(n / 2)+n
\end{aligned}
$$

We inductively proved the assertion that $G(n)=T(n)$.

Giving a formula for \mathcal{T} with no sums or recurrences is called solving the recurrence \mathcal{T}.

Solving Recurrences
Guess and Verify

$$
\begin{aligned}
& \text { Guess: } \mathcal{G}(n)=2 n^{2}-n \\
& \text { Verify: } \mathcal{G}(1)=1 \text { and } \mathcal{G}(n)=4 \mathcal{G}(n / 2)+n
\end{aligned}
$$

$$
\text { Similarly: } \mathcal{T}(1)=1 \text { and } \mathcal{T}(n)=4 \mathcal{T}(n / 2)+n
$$

$$
\text { So } \mathcal{T}(n)=\mathcal{G}(n)
$$

Technique 2

Guess Form and Calculate Coefficients

$$
\begin{aligned}
& \text { Guess: } \mathcal{T}(n)=a n^{2}+b n+c \text { for some } a, b, c \\
& \text { Calculate: } \mathcal{T}(1)=1 \Rightarrow a+b+c=1 \\
& \qquad \begin{array}{r}
\mathcal{T}(n)=4 \mathcal{T}(n / 2)+n \\
\Rightarrow a n^{2}+6 n+c=4\left[a(n / 2)^{2}+b(n / 2)+c\right]+n \\
=a n^{2}+2 b n+4 c+n
\end{array} \\
& \Rightarrow(b+1) n+3 c=0 \\
& \text { Therefore: } b=-1 \quad c=0 \quad a=2
\end{aligned}
$$

A computer scientist not only deals with numbers, but also with

- Finite Strings of symbols - Very visual objects called graphs
- And especially, e specially the special graphs called trees

Definition: Graphs

\mathcal{A} graph $\mathcal{G}=(\mathcal{V}, \mathcal{E})$ consists of a finite set V of vertices (nodes) and a finite set \mathcal{E} of edges. Each edge is a set $\{a, 6\}$ of two different vertices.

A graph may not have self loops or multiple edges.

Definition: Directed Graphs

$\mathcal{A} \operatorname{graph} G=(\mathcal{V}, \mathcal{E})$ consists of a finite set V of vertices (nodes) and a finite set E of edges. Each edge is an ordered pair $\langle a, b>o f$ two different vertices.

Unless we say otherwise, our directed graphs will not have multi-edges, or self Coops.

Definition: Tree

\mathcal{A} tree is a directed graph with one specialnode called the root and the property that each node must a unique path from the root to itself.

Child: If $\varangle u, v>2 \mathcal{E}$, we sav is a child of u Parent: If $\varangle u, v>2 \mathcal{E}$, we say u is the parent of u Leaf: If u has no children, we say u is leaf. Siblings: If u and v have the same parent, they are siblings.
Descendants of u: The set of nodes reachable from u (including u).
Sub-tree rooted at u: Descendants of u and all the edges between them where uhas beendesignated as a root.

Classic Visualization: Tree

Inductive rule:
If G is a single node

$$
\operatorname{Viz}(\mathcal{G})=\bigcirc
$$

If \mathcal{G} consists of root r with sub-trees
$\mathcal{T}_{1}, \mathcal{T}_{2}, \ldots, \mathcal{T}_{\kappa}$

$$
\operatorname{Viz}(\mathcal{G})=
$$

luz(T_{1}) Viz $\left(\mathrm{T}_{2}\right) \cdots$

Choice Tree

A choice tree is a tree with an object called a "choice" associated with each edge and a labeloneach Le af.

Definition: Labeled Tree

A tree node labeled by \mathcal{S} is a tree $\mathcal{T}=$ $\langle V, E\rangle$ with an associated function Labe l l_{1} : V to S

A tree edge labeled by \mathcal{S} is a tree $\mathcal{T}=$ $\langle V, E\rangle$ with an associated function Label $l_{2}: \mathcal{E}$ to S

$$
\mathcal{T}(1)=1 ; \mathcal{T}(n)=4 \mathcal{T}(n / 2)+n
$$

For each n (power of 2), will de fine a tree $\mathcal{W}(n)$ node labeled by Natural numbers. $\mathcal{W}(n)$ will give us an inc is ave picture of $\mathcal{T}(n)$.

Inductive Definition Of Labeled Tree $\mathcal{W}(n)$

Inductive De finition of Labeled Tree $\mathcal{W}(n)$

Inductive \mathcal{D} e finition of Labeled Tree $\mathcal{W}(n)$

Invariant: LabeLS um $\mathcal{W}(n)=\mathcal{T}(n)$

(

$$
\begin{gathered}
\text { Instead of } \\
\mathcal{T}(1)=1 ; \mathcal{T}(n)=4 \mathcal{T}(n / 2)+n
\end{gathered}
$$

We could illuminate

$$
\mathcal{T}(1)=1 ; \mathcal{T}(n)=2 \mathcal{T}(n / 2)+n
$$

$$
\mathcal{T}(1)=1 ; \mathcal{T}(n)=2 \mathcal{T}(n / 2)+n
$$

$*_{\text {Has closed form }: n \log _{2}(n)}$ where n is a power of 2

Representing a recurrence relation as a labeled tree is one of the basics tools you will have to put recurrence relations in closed form.

The Lindenmayer Game

$$
\begin{aligned}
& \Sigma=\{a, b\} \\
& \text { Start word: } a
\end{aligned}
$$

$$
\mathcal{S U B}(a)=a b \quad S \mathcal{U C B}(b)=a
$$

$$
\text { For each } w=w_{1} w_{2} \ldots w_{n}
$$

$$
\mathcal{N} \mathcal{E} \mathcal{X T}(w)=\mathcal{S} \mathcal{U B}\left(w_{1}\right) \mathcal{S} \mathcal{U B}\left(w_{2}\right) . . S \mathcal{S} \mathcal{B}\left(w_{n}\right)
$$

The Lindenmayer Game

$\mathcal{S U B}(a)=a b$ $\mathcal{S U B}(6)=a$
For each $w=w_{1} w_{2} \ldots w_{n}$
$\mathcal{N} \mathcal{E} \mathcal{X}(w)=S \mathcal{U B}\left(w_{1}\right) S \mathcal{U B}\left(w_{2}\right) . . S \mathcal{U B}\left(w_{n}\right)$

Time 1: a
Time 2: ab
Time 3: $a b a$
Time 4: abaab
Time 5: abaababa

The Lindenmayer Game

$\mathcal{S U B}(a)=a b$

$$
\mathcal{S U B}(b)=a
$$

For each $w=w_{1} w_{2} \ldots w_{n}$
$\mathcal{N} \mathcal{E X} \mathcal{T}(w)=\mathcal{S U B}\left(w_{1}\right) \mathcal{S U B}\left(w_{2}\right) . . S \mathcal{U B}\left(w_{n}\right)$

Time 1: a
Time 2: $a 6$
Time 3:aba
Time 4: abaab
Time 5: abaababa

How long are
the strings as a
function of
time?

Aristid Lindenmayer (1925-1989)

1968 Invents L-systems in Theoretical Botany

Time 1: a
Time 2:ab
Time 3: aba
Time 4:abaab
Time 5: abaababa
$\mathcal{F} \operatorname{BO} O \mathcal{N A C C I}(n)$
cells at time n

The Koch Game

$\Sigma=\{\mathcal{F},+,-\}$
Start word: \mathcal{F}
$\mathcal{S U B}(\mathcal{F})=\mathcal{F}+\mathcal{F} \ldots \mathcal{F}+\mathcal{F} \quad S \mathcal{U B}(+)=+\mathcal{S U B}(-)=-$
For each $w=w_{1} w_{2} \ldots w_{n}$
$\mathcal{N} \mathcal{E X T}(w)=\mathcal{S} \mathcal{U B}\left(w_{1}\right) \mathcal{S} \mathcal{U B}\left(w_{2}\right) . . S \mathcal{S} \mathcal{B}\left(w_{n}\right)$

The Koch Game

Gen $0: \mathcal{F}$

$\mathcal{G e n}$ 1: $\mathcal{F}+\mathcal{F} \ldots \mathcal{F}+\mathcal{F}$
\mathcal{G} en 2: $\mathcal{F}+\mathcal{F} \ldots \mathcal{F}+\mathcal{F}+\mathcal{F}+\mathcal{F} \ldots \mathcal{F}+\mathcal{F} \ldots \mathcal{F}+\mathcal{F} \ldots \mathcal{F}+\mathcal{F}+\mathcal{F}+\mathcal{F} \ldots \mathcal{F}+\mathcal{F}$

The Koch Game

Picture representation:
\mathcal{F} draw forward one unit
+turn 60 degree left

- turn 60 degrees right.

Gen 0: F
Gen 1: $\mathcal{F}+\mathcal{F}-\mathcal{F}+\mathcal{F}$
$\mathcal{G e n} 2: \mathcal{F}+\mathcal{F}-\mathcal{F}+\mathcal{F}+\mathcal{F}+\mathcal{F}-\mathcal{F}+\mathcal{F}-\mathcal{F}+\mathcal{F}-\cdot \mathcal{F}+\mathcal{F}+\mathcal{F}+\mathcal{F}-\cdot \mathcal{F}+\mathcal{F}$

The Koch Game

$$
\mathcal{F}+\mathcal{F} \ldots \mathcal{F}+\mathcal{F}
$$

The Koch Game

$$
\mathcal{F}+\mathcal{F} \ldots \mathcal{F}+\mathcal{F}+\mathcal{F}+\mathcal{F} \ldots \mathcal{F}+\mathcal{F} \ldots \mathcal{F}+\mathcal{F} \ldots \mathcal{F}+\mathcal{F}+\mathcal{F}+\mathcal{F} \ldots \mathcal{F}+\mathcal{F}
$$

Kock Curve

Dragon Game
$\mathcal{S U B}(X)=X+\mathcal{Y} \mathcal{F}+$
$\mathcal{S V B}(\mathcal{Y})=-\mathcal{F} X \cdot \mathcal{Y}$

Dragon Curve :

Hilbert Game

$\mathcal{S U B}(\mathcal{L})=+\mathcal{R F} \cdot L \mathcal{F} \mathcal{L} \cdot \mathcal{F} \mathcal{R}+$
$\mathcal{S U B}(\mathbb{R})=-\mathcal{L} \mathcal{F}+\mathscr{R} \mathcal{F} \mathcal{R}+\mathcal{F} \mathcal{L}$.

Hilbert Curve :

Note: Make 90
degree turns instead of 60 degrees.

Hilbert's Space Filling Curve

Peano-Gossamer Curve

Sierpinski Triangle

Lindenmayer 1968

$\mathcal{S} \mathcal{U B}(\mathcal{F})=\mathcal{F}[-\mathcal{F}] \mathcal{F}[+\mathcal{F}][\mathcal{F}]$

Interpret the stuff inside brackets as a branch.

Lindenmayer 1968

Inductive Leaf

