Great Theoretical I deas In Computer Science

Steven Rudich CS 15-251 Spring 2005

Lecture 2 Jan 13, 2005 Carnegie Mellon University

Induction II: Inductive Pictures

Theorem? (k, 0)

Try it out on small examples:

$$2^{0}$$
 = 2^{1} -1
 2^{0} + 2^{1} = 2^{2} -1
 2^{0} + 2^{1} + 2^{2} = 2^{3} -1

S_k "1+2+4+8+...+2^k = 2^{k+1}-1" Use induction to prove $\forall k \ 0, S_k$

Establish "Base Case": S_{0.} We have already check it.

Establish "Domino Property": $\forall k \in (0, S_k) \in S_{k+1}$

"Inductive Hypothesis" S_k :

$$1+2+4+8+...+2^{k} = 2^{k+1}-1$$

Add 2^{k+1} to both sides:

$$1+2+4+8+...+2^{k}+2^{k+1}=2^{k+1}+2^{k+1}-1$$

$$1+2+4+8+...+2^{k}+2^{k+1}=2^{k+2}-1$$

FUNDAMENTAL LEMMA OF THE POWERS OF TWO:

The sum of the first n powers of 2, is one less than the next power of 2.

Yet another way of packaging inductive reasoning is to define an "invariant".

Invariant (adj.)

- 1. Not varying; constant.
- 2. (mathematics) Unaffected by a designated operation, as a transformation of coordinates.

Yet another way of packaging inductive reasoning is to define an "invariant".

Invariant (adj.)

3. (programming) A rule, such as the ordering an ordered list or heap, that applies throughout the life of a data structure or procedure.

Each change to the data structure must maintain the correctness of the invariant.

Invariant Induction Suppose we have a time varying world state: W_0 , W_1 , W_2 , ...

Each state change is assumed to come from a list of permissible operations. We seek to prove that statement S is true of all future worlds.

Argue that S is true of the initial world.

Show that if S is true of some world – then S remains true after one permissible operation is performed.

Odd/Even Handshaking Theorem:

At any party, at any point in time, define a person's parity as ODD/EVEN according to the number of hands they have shaken.

Statement: The number of people of odd parity must be even.

Initial case: Zero hands have been shaken at the start of a party, so zero people have odd parity.

If 2 people of <u>different parities shake</u>, then they both swap parities and the odd parity count is unchanged.

If 2 people of the same parity shake, they both change. But then the odd parity count changes by 2, and remains even.

Inductive Definition of n! [said n "factorial"]

O! = 1; n! = n*(n-1)!

$$O! = 1; n! = n*(n-1)!$$

F:=1; For x = 1 to n do F:=F*x; Return F

Program for n!?

O! = 1; n! = n*(n-1)!

F:=1;
For x = 1 to n do

F:=F*x; n=0 returns 1

Return F

n=1 returns 1

n=2 returns 2

Program for n! ?

O! = 1; n! = n*(n-1)!


```
F:=1;
For x = 1 to n do
F:=F*x;
Return F
```

Loop Invariant: F=x!

True for x=0. If true after k times through – true after k+1 times through.

Inductive Definition of T(n)

$$T(1) = 1$$

 $T(n) = 4T(n/2) + n$

Notice that T(n) is inductively defined for positive powers of 2, and undefined on other values.

Inductive Definition of T(n)

$$T(1) = 1$$

 $T(n) = 4T(n/2) + n$

Notice that T(n) is inductively defined for positive powers of 2, and undefined on other values.

$$T(1)=1$$
 $T(2)=6$ $T(4)=28$ $T(8)=120$

Guess a closed form formula for T(n). Guess G(n)

 $G(n) = 2n^2 - n$ Let the domain of G be the powers of two.

Two equivalent functions?

$$G(n) = 2n^2 - n$$

Let the domain of G be the powers of two.

$$T(1) = 1$$

$$T(n) = 4 T(n/2) + n$$

Domain of T are the powers of two.

Inductive Proof of Equivalence

Base:
$$G(1) = 1$$
 and $T(1) = 1$

Induction Hypothesis:

$$T(x) = G(x)$$
 for $x < n$

Hence:
$$T(n/2) = G(n/2) = 2(n/2)^2 - n/2$$

$$T(n) = 4 T(n/2) + n$$

$$= 4 G(n/2) + n$$

$$= 4 [2(n/2)^{2} - n/2] + n$$

$$= 2n^{2} - 2n + n$$

$$= 2n^{2} - n$$

$$= G(n)$$

$$G(n) = 2n^2 - n$$

$$T(1) = 1$$

 $T(n) = 4 T(n/2) + n$

We inductively proved the assertion that G(n) = T(n).

Giving a formula for T with no sums or recurrences is called solving the recurrence T.

Solving Recurrences Guess and Verify

Guess: $G(n) = 2n^2 - n$

Verify: G(1) = 1 and G(n) = 4 G(n/2) + n

Similarly:T(1) = 1 and T(n) = 4 T(n/2) + n

So T(n) = G(n)

Technique 2 Guess Form and Calculate Coefficients

Guess: $T(n) = an^2 + bn + c$ for some a,b,c

Calculate:
$$T(1) = 1 \Rightarrow a + b + c = 1$$

$$T(n) = 4 T(n/2) + n$$

 $\Rightarrow an^2 + bn + c = 4 [a(n/2)^2 + b(n/2) + c] + n$
 $= an^2 + 2bn + 4c + n$
 $\Rightarrow (b+1)n + 3c = 0$
Therefore: b=-1 c=0 a=2

GRAPHS

Definition: Graphs

A graph G = (V,E) consists of a finite set V of vertices (nodes) and a finite set E of edges. Each edge is a set {a, b} of two different vertices.

A graph may not have self loops or multiple edges.

Definition: Directed Graphs

A graph G = (V,E) consists of a finite set V of vertices (nodes) and a finite set E of edges. Each edge is an <u>ordered</u> pair <a,b> of two different vertices.

Unless we say otherwise, our directed graphs will not have multi-edges, or self loops.

Definition: Tree

A tree is a directed graph with one special node called the root and the property that each node must a unique path from the root to itself.

Child: If <u,v>2E, we sav is a child of u

Parent: If <u,v>2E, we say u is the parent of u

Leaf: If u has no children, we say u is leaf.

Siblings: If u and v have the same parent, they are siblings.

Descendants of u: The set of nodes reachable from u (including u).

Sub-tree rooted at u: Descendants of u and all the edges between them where u has been designated as a root.

Classic Visualization: Tree

Inductive rule:

If G is a single node

$$Viz(G) =$$

If G consists of root r with sub-trees

$$T_1, T_2, ..., T_k$$

Viz(G) =

I own 3 beanies and 2 ties. How many beanie/tie combos might I wear to the ball tonight?

Choice Tree

A choice tree is a tree with an object called a "choice" associated with each edge and a label on each leaf.

Definition: Labeled Tree

A tree node labeled by S is a tree T = <V,E> with an associated function Label₁: V to S

A tree edge labeled by S is a tree T = <V,E> with an associated function Label₂: E to S

$$T(1)=1$$
; $T(n)=4T(n/2)+n$

For each n (power of 2), will define a tree W(n) node labeled by Natural numbers. W(n) will give us an incisive picture of T(n).

Inductive Definition Of Labeled Tree W(n)

Inductive Definition Of Labeled Tree W(n)

1

Inductive Definition Of Labeled Tree W(n)

Inductive Definition Of Labeled Tree W(n)

Invariant: LabelSum W(n) = T(n)

$$T(n) = n + 4 T(n/2)$$
 $W(n/2) W(n/2) W(n/2)$
 $W(n/2) = 1$

$$n(1+2+4+8+...+n) = n(2n-1) = 2n^2-n$$

$$T(n) = n + 2 T(n/2)$$

$$= n$$

$$W(n/2)$$

$$W(n/2)$$

$$= 1$$

$$= 1$$

$$T(1)=1$$
; $T(n) = 2T(n/2) + n$

Has closed form: nlog₂(n) where n is a power of 2

The Lindenmayer Game

```
\Sigma = \{a,b\}
Start word: a
```

```
SUB(a) = ab SUB(b) = a

For each w = w_1 w_2 ... w_n

NEXT(w) = SUB(w<sub>1</sub>)SUB(w<sub>2</sub>)..SUB(w<sub>n</sub>)
```

The Lindenmayer Game

```
SUB(a) = ab SUB(b) = a

For each w = w_1 w_2 ... w_n

NEXT(w) = SUB(w_1)SUB(w_2)..SUB(w_n)
```

Time 1: a

Time 2: ab

Time 3: aba

Time 4: abaab

Time 5: abaababa

The Lindenmayer Game

SUB(a) = ab SUB(b) = a
For each
$$w = w_1 w_2 ... w_n$$

NEXT(w) = SUB(w_1)SUB(w_2)..SUB(w_n)

Time 1: a

Time 2: ab

Time 3: aba

Time 4: abaab

Time 5: abaababa

How long are the strings as a function of time?

Aristid Lindenmayer (1925-1989)

1968 Invents L-systems in Theoretical Botany

Time 1: a

Time 2: ab

Time 3: aba

Time 4: abaab

Time 5: abaababa

FIBONACCI (n) cells at time n

$$\Sigma = \{F,+,-\}$$

Start word: F

SUB(F) = F+F--F+F SUB(+)=+ SUB(-)=-
For each
$$w = w_1 w_2 ... w_n$$

NEXT(w) = SUB(w_1)SUB(w_2)..SUB(w_n)

Gen 0:F

Gen 1: F+F--F+F

Gen 2: F+F--F+F+F+F--F+F--F+F--F+F

Picture representation:

- F draw forward one unit
- + turn 60 degree left
- turn 60 degrees right.
- Gen 0: F
- Gen 1: F+F--F+F
- Gen 2: F+F--F+F+F+F--F+F--F+F--F+F

Koch Curve

Dragon Game

$$SUB(X) = X+YF+$$

 $SUB(Y) = -FX-Y$

Dragon Curve:

Hilbert Game SUB(L)= +RF-LFL-FR+ SUB(R)= -LF+RFR+FL-

Hilbert Curve:

Note: Make 90 degree turns instead of 60 degrees.

Hilbert's Space Filling Curve

Peano-Gossamer Curve

Sierpinski Triangle

Lindenmayer 1968

$$SUB(F) = F[-F]F[+F][F]$$

Interpret the stuff inside brackets as a branch.

Lindenmayer 1968

Inductive Leaf

