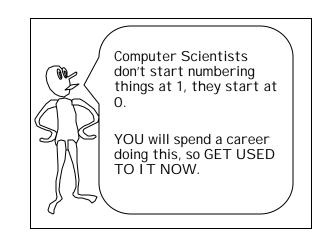

5		
H G	reat Theoretical I deas I n Co	mputer Science
Steven Rudich		CS 15-251 Spring 2005
Lecture 1	Jan 11, 2005	Carnegie Mellon University
Ind	uction: One Step	o At A Time



n dominoes numbered 0 to n-1 $F_{k} \stackrel{<}{} The \ k^{th} \ domino \ falls \\ For \ all \ 0 = k < n-1: \\ F_{k} \) \quad F_{k+1} \\ \end{cases}$

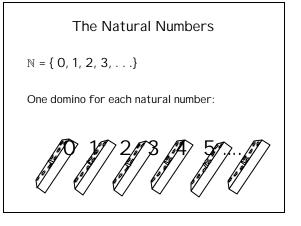
 $\begin{array}{ll} \mathsf{F}_0 \) & \mathsf{F}_1 \) & \mathsf{F}_2 \) & \ldots \\ \mathsf{F}_0 \) & \text{All Dominoes Fall} \end{array}$

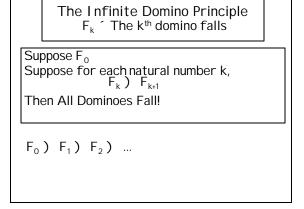
Standard Notation/Abbreviation "for all" is written "8"

Example:

For all k>0, P(k) is equivalent to 8k>0, P(k)

n dominoes numbered 0 to n-1

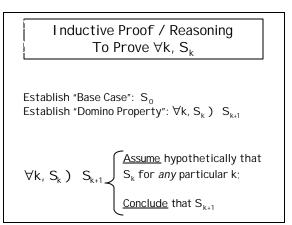

 F_k The kth domino falls 8k, 0 = k < n-1: F_k F_{k+1}

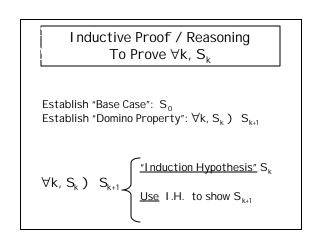

 F_0) F_1) F_2) ... F_0) All Dominoes Fall

The Natural Numbers

 $\mathbb{N} = \{ 0, 1, 2, 3, \ldots \}$

The Infinite Domino Principle F_k The kth domino falls


Suppose F_0 Suppose for each natural number k, F_k) F_{k+1} Then All Dominoes Fall!

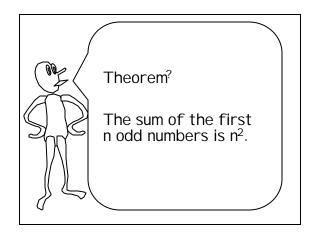

Proof: If they do not all fall, there must be a least numbered domino d>0 that did not fall. Hence, F_{d-1} and not $F_d \cdot F_{d-1}$) F_d . Hence, domino d fell and did not fall. Contradiction.

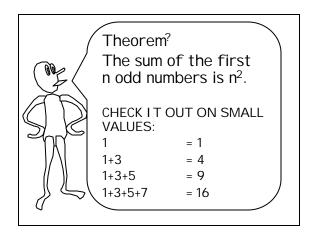
Mathematica statements pro dominoe	ved instead of
I nfinite sequence of dominoes. $F_k \uparrow$ domino k falls	Infinite sequence of statements: $S_{0'} S_{1'} \dots F_k \land S_k$ proved

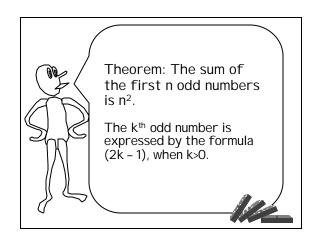
Establish 1)
$$F_0$$

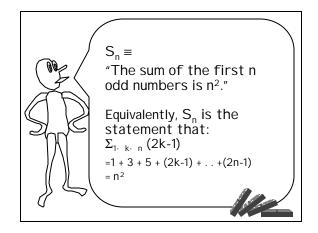
2) 8 k, F_k) F_{k+1}

Conclude that F_k is true for all k




Inductive Proof / Reasoning To Prove $\forall k \ b, \ S_k$

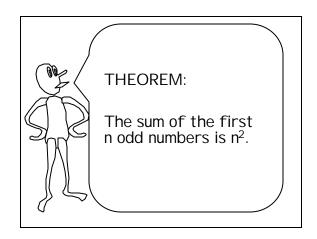

Establish "Base Case": S_b Establish "Domino Property": $\forall k \ b, \ S_k$) S_{k+1}

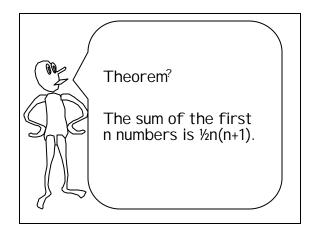

Assume k b

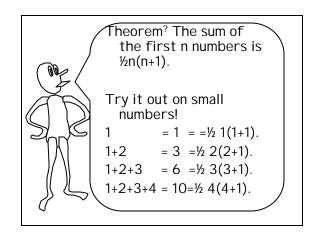
Assume "Inductive Hypothesis": S_k Prove that S_{k+1} follows

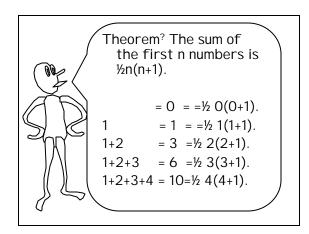
 $\begin{array}{l} S_n \equiv \mbox{``The sum of the first n odd numbers is $n^2.''$} $``1 + 3 + 5 + (2k-1) + ... + (2n-1) = $n^{2''}$ \end{array}$

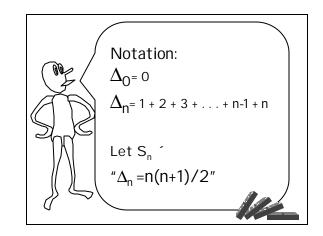
Trying to establish that: $8n_1 S_n$

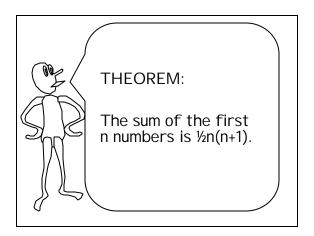

Base case: S_1 is true

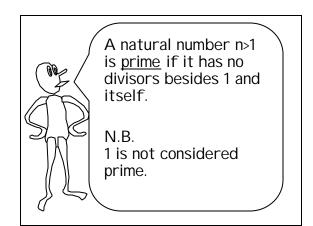

The sum of the first 1 odd numbers is 1.

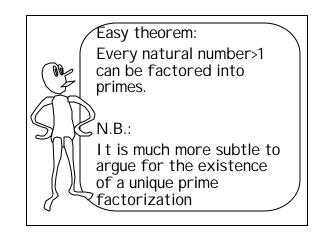

$$\begin{split} & S_n \equiv \text{``The sum of the first n odd numbers is } n^{2, \text{``}} \\ & \text{``1 + 3 + 5 + (2k-1) + ... + (2n-1) = } n^{2^{\prime\prime}} \\ & \text{Trying to establish that: 8n _ 1 S_n} \\ & \text{Assume ``I nduction Hypothesis'': S_k} \\ & (\text{for any particular k _ 1)} \\ & 1+3+5+...+ (2k-1) = k^2 \end{split}$$

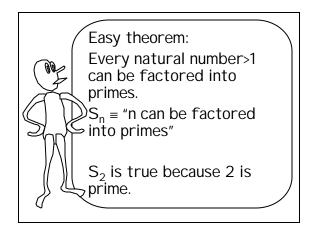

$$\begin{split} &S_n \equiv \text{``The sum of the first n odd numbers is n^2.''} \\ &\text{``1 + 3 + 5 + (2k-1) + ... + (2n-1) = n^{2''}} \\ &\text{Trying to establish that: 8n $_1 S_n} \\ &\frac{\text{Assume ``I nduction Hypothesis'': S_k}}{(for any particular k $_1)} \\ &1+3+5+...+ (2k-1) &= k^2 \\ &\text{Add (2k+1) to both sides.} \\ &1+3+5+...+ (2k-1)+(2k+1) &= k^2+(2k+1) \\ &\text{Sum of first k+1 odd numbers} &= (k+1)^2 \\ &\frac{\text{CONCLUSE: S_{k:1}}}{(k+1)^2} \end{split}$$

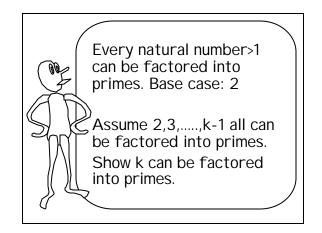

$$\begin{split} & S_n \equiv \text{``The sum of the first n odd numbers is n^2.''} \\ & \text{``1 + 3 + 5 + (2k-1) + ... + (2n-1) = n^{2''}} \\ & \text{Trying to establish that: 8n_1 S_n} \\ & \text{Established base case: S_1} \\ & \text{Established domino property: 8 k_1 S_k} S_{k+1} \\ & \text{By induction of n, we conclude that:} \\ & 8n_1 S_n \end{split}$$

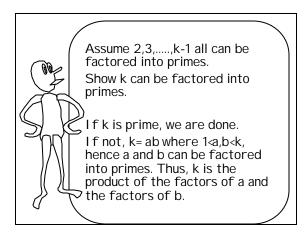


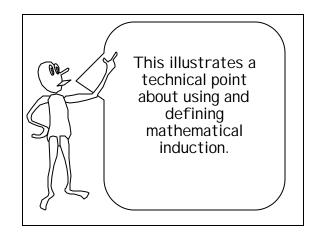


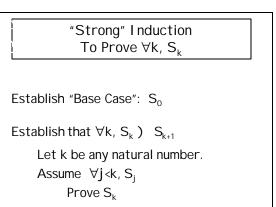










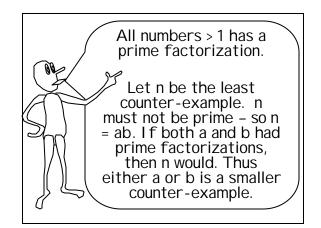

$\frac{\text{All Previous}}{\text{To Prove }\forall k, S_k}$

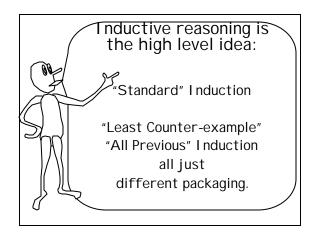
Establish "Base Case": S₀

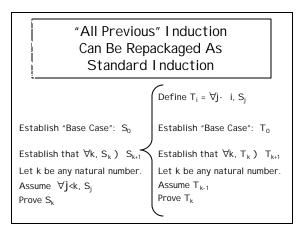
Establish that $\forall k, S_k$) S_{k+1}

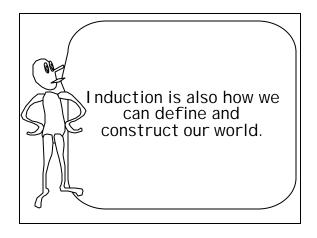
Let k be any natural number. Induction Hypothesis: Assume ∀j<k, S_i

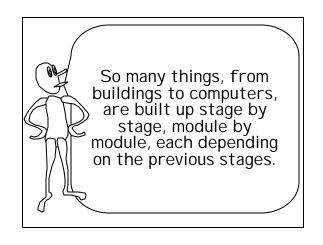
Derive S_r

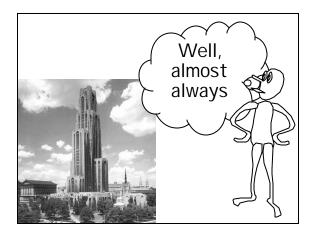


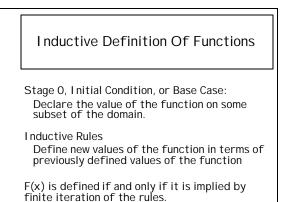

Least Counter-Example I nduction to Prove $\forall k, S_k$


Establish "Base Case": S_0 Establish that $\forall k, S_k$) S_{k+1}


Assume that S_k is the least counter-example.


Derive the existence of a smaller counter-example





Inductive Definition Of Functions

Stage O, Initial Condition, or Base Case: Declare the value of the function on some subset of the domain.

I nductive Rules Define new values of the function in terms of previously defined values of the function

If there is an x such that F(x) has more than one value – then the whole inductive definition is said to be inconsistent.

Inductive Definition Recurrence Relation for F(X)

I nitial Condition, or Base Case: F(0) = 1

I nductive Rule For n>0, F(n) = F(n-1) + F(n-1)

n	0	1	2	3	4	5	6	7
F(n)	1							

Inductive Definition Recurrence Relation for F(X)

I nitial Condition, or Base Case: F(0) = 1

I nductive Rule For n>0, F(n) = F(n-1) + F(n-1)

n	0	1	2	3	4	5	6	7
F(n)	1	2						

Inductive Definition Recurrence Relation for F(X)

I nitial Condition, or Base Case: F(0) = 1

I nductive Rule For n>0, F(n) = F(n-1) + F(n-1)

n	0	1	2	3	4	5	6	7
F(n)	1	2	4					

Rec	Inductive Definition Recurrence Relation for F(X)									
l nitial Cor F(O) = 1	I nitial Condition, or Base Case: F(0) = 1									
	Inductive Rule For n>0, F(n) = F(n-1) + F(n-1)									
n	0	1	2	3	4	5	6	7		
F(n)	1	2	4	8	16	32	64	128		

	Inductive Definition Recurrence Relation for $F(X) = 2^{X}$									
	I nitial Condition, or Base Case: F(0) = 1									
•	Inductive Rule For n>0, F(n) = F(n-1) + F(n-1)									
ſ	n	0	1	2	3	4	5	6	7	
I	F(n)	1	2	4	8	16	32	64	128	

Inductive Definition Recurrence Relation								
I nitial Condition, or Base Case: F(1) = 1								
Inductive For n>1, F(i		(n/2) + F	(n/2)			
n	0	1	2	3	4	5	6	7
F(n) 1								

Inductive Definition	
Recurrence Relation	

I nitial Condition, or Base Case: F(1) = 1

I nductive Rule For n>1, F(n) = F(n/2) + F(n/2)

n	0	1	2	3	4	5	6	7	
F(n)		1	2						

Inductive Definition Recurrence Relation	
I nitial Condition, or Base Case: F(1) = 1	

I nductive Rule For n>1, F(n) = F(n/2) + F(n/2)

n	0	1	2	3	4	5	6	7
F(n)		1	2		4			

Inductive Definition Recurrence Relation

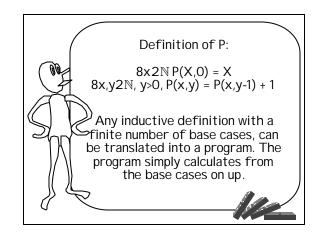
I nitial Condition, or Base Case: F(1) = 1

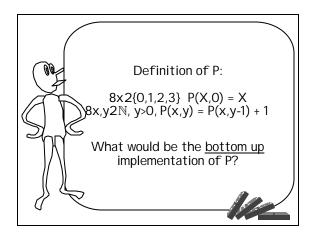
I nductive Rule For n>1, F(n) = F(n/2) + F(n/2)

n	0	1	2	3	4	5	6	7
F(n)	%	1	2	%	4	%	%	%

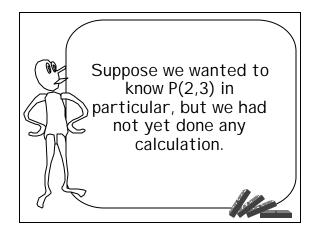
	Rec	urr	enc	Def e Re vhole	elat	ion	of 2	<u>)</u>
I nitial Conc F(1) = 1	litior	ı, or	Base	Cas	e:			
Inductive R For n>1, F(n		(n/2) + F	(n/2)			
n	0	1	2	3	4	5	6	7
F(n)	%	1	2	%	4	%	%	%

		١n	se: 8 duc1 0, P(tive	Rule	:		1	
P(x,y)	0	1	2	3	4	5	6	7]
0									
1									
2									
3									
L	<u> </u>	<u> </u>	1		<u> </u>	<u> </u>	I	1	J


		١n	se: 8 duc1 0, P(tive		:		1
P(x,y)	0	1	2	3	4	5	6	7
0	0							
1	1							
2	2							
3	3							


	Base ,y2№	١n	duct	tive	Rule	:		1	
P(x,y)	0	1	2	3	4	5	6	7	
0	0	1							
1	1	2							
2	2	3							
3	3	4							

E	Base				•		= X		
8x	,y2ℕ						-1) +	1	
P(x,y)	0	1	2	3	4	5	6	7	
0	0	1	2						
1	1	2	3						
2	2	3	4						
3	3	4	5						
	8x P(x,y) 0 1 2	8x,y2№ P(x,y) 0 0 0 1 1 2 2	In 8x,y2N, y> P(x,y) 0 0 0 1 1 2 2	P(x,y) 0 1 2 0 0 1 2 1 1 2 3 2 2 3 4	P(x,y) 0 1 2 3 0 0 1 2 3 1 1 2 3 2 2 2 3 4 4	Inductive Rule $8x, y2\mathbb{N}, y>0, P(x, y) = P$ $P(x,y)$ 0 1 2 3 4 0 0 1 2 3 4 1 1 2 3 4 5 2 2 3 4 5 4	Inductive Rule: $8x, y2\mathbb{N}, y>0, P(x,y) = P(x,y)$ $P(x,y)$ 0 1 2 3 4 5 0 0 1 2 3 4 5 1 1 2 3 4 5 2 2 3 4 5	$8x, y2\mathbb{N}, y>0, P(x,y) = P(x,y-1) + $ $P(x,y) 0 1 2 3 4 5 6$ $0 0 1 2 4 5$ $1 1 2 3 4 5$ $2 2 3 4 5$	Inductive Rule: $8x,y2\mathbb{N}, y>0, P(x,y) = P(x,y-1) + 1$ P(x,y) 0 1 2 3 4 5 6 7 0 0 1 2 3 4 5 6 7 1 1 2 3 4 5 6 7 2 2 3 4 5 6 7


E	Base	Cas	se: 8	x2ℕ	P(X	(,0)	= X		
8x	,y2ℕ		duct 0, P(-1) +	1	
	-		-						
P(x,y)	0	1	2	3	4	5	6	7	
0	0	1	2	3	4	5	6	7	
1	1	2	3	4	5	6	7	8	
2	2	3	4	5	6	7	8	9	
3	3	4	5	6	7	8	9	10	

	Base ,y2№	١n	duct	tive	Rule	:		1	
X+Y	0	1	2	3	4	5	6	7]
0	0	1	2	3	4	5	6	7	
1	1	2	3	4	5	6	7	8	
2	2	3	4	5	6	7	8	9	
3	3	4	5	6	7	8	9	10	
							-		

For k = 0 t P(k,(For j = 1 t For	0)=k o 7 k = 0		⁹ (k,j -1	Bottom-Up Program for P 1					
P(x,y)	0	1	2	3	4	5	6	7	
0	0	1	2	3	4	5	6	7	
1	1	2	3	4	5	6	7	8	
2	2	3	4	5	6	7	8	9	
3	3	4	5	6	7	8	9	10	

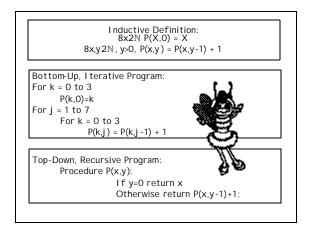
		١n	se: 8 duct 0, P(tive	Rule	:		1
P(x,y)	0	1	2	3	4	5	6	7
0								
1								
2				?				
3								

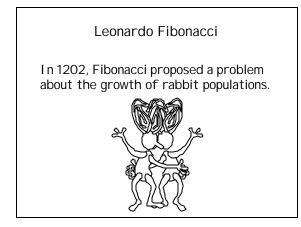
		e Cas In ∛, y>	duct	tive	Rule	:		1
P(x,y)	0	1	2	3	4	5	6	7
0								
1								
2			?	?				
3								

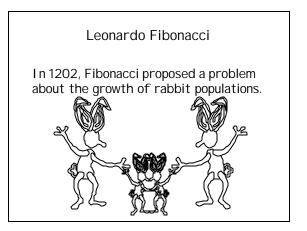
		١n	se: 8 duc† 0, P(tive	Rule	:		1
P(x,y)	0	1	2	3	4	5	6	7
0								
1								
2		?	?	?				
3								

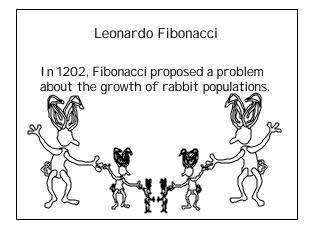
	Base Case: 8x2ℕ P(X,0) = X I nductive Rule: 8x,y2ℕ, y>0, P(x,y) = P(x,y-1) + 1											
P(x,y)	0	1	2	3	4	5	6	7]			
0												
1												
2	?	?	?	?								
3												

Base Case: 8x 2ℕ P(X,0) = X I nductive Rule: 8x,y2ℕ, y>0, P(x,y) = P(x,y-1) + 1										
P(x,y)	0	1	2	3	4	5	6	7		
0										
1										
2	2	?	?	?						
3										


	Base ,y2№	١n	duct	tive	Rule	:		1				
P(x,y)	0	1	2	3	4	5	6	7				
0	0											
1												
2	2	3	?	?								
3	3											


Γ			١n	e: 8 duct 0, P(tive	Rule	:		1	
L		·)	., ,		())		()	., .		
	P(x,y)	0	1	2	3	4	5	6	7]
	0									
	1									
	2	2	3	4	?					
	3									
										-


		١n	duct	x2ℕ tive (x,y)	Rule	:		1	
P(x,y)	0	1	2	3	4	5	6	7	
0									
1									
2	2	3	4	5					
3									
	-	-					-	•	•


Procedure P(x,y): Top Down If y=0 return x Otherwise return P(x,y-1)+1;									
P(x,y)	0	1	2	3	4	5	6	7	
0									
1									
2	2	3	4	5					
3									

Procedure P(x,y): If y=0 return x Otherwise return P(x,y-1)+1;										
P(x,y)	0	1	2	3	4	5	6	7]	
0										
1										
2	2	3	4	5						
3]	
	-	-	-	-	-	-	-	•	•	

The rabbit reproduction model

A rabbit lives forever

•The population starts as a single newborn pair

•Every month, each productive pair begets a new pair which will become productive after 2 months old

 $F_n{=}-\#$ of rabbit pairs at the beginning of the n^{th} month

month	1	2	3	4	5	6	7
rabbits							

The rabbit reproduction model

A rabbit lives forever

•The population starts as a single newborn pair •Every month, each productive pair begets a new pair which will become productive after 2 months old

 $F_n{=} \#$ of rabbit pairs at the beginning of the n^{th} month

month	1	2	3	4	5	6	7
rabbits	1						

The rabbit reproduction model

A rabbit lives forever

•The population starts as a single newborn pair •Every month, each productive pair begets a new pair which will become productive after 2 months old

 $F_n{=} \# \mbox{ of rabbit pairs at the beginning of the } n^{th} \mbox{ month}$

month	1	2	3	4	5	6	7
rabbits	1	1					

The rabbit reproduction model

A rabbit lives forever

•The population starts as a single newborn pair •Every month, each productive pair begets a new pair which will become productive after 2 months old

 $F_n \mbox{=} \mbox{\# of rabbit pairs at the beginning of the n^{th} month}$

month	1	2	3	4	5	6	7
rabbits	1	1	2				

The rabbit reproduction model

A rabbit lives forever

•The population starts as a single newborn pair

•Every month, each productive pair begets a new pair which will become productive after 2 months old

 $F_n \mbox{=} \mbox{\# of rabbit pairs at the beginning of the n^{th} month}$

month	1	2	3	4	5	6	7
rabbits	1	1	2	3			

The rabbit reproduction model

A rabbit lives forever

•The population starts as a single newborn pair •Every month, each productive pair begets a new pair which will become productive after 2 months old

 $F_n{=} \#$ of rabbit pairs at the beginning of the n^{th} month

month	1	2	3	4	5	6	7
rabbits	1	1	2	3	5		

The rabbit reproduction model

A rabbit lives forever

•The population starts as a single newborn pair •Every month, each productive pair begets a

new pair which will become productive after 2 months old

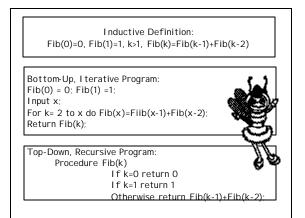
 $F_n{=} \# \mbox{ of rabbit pairs at the beginning of the n^{th} month$

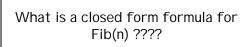
month	1	2	3	4	5	6	7
rabbits	1	1	2	3	5	8	13

Inductive Definition or	
Recurrence Relation for the	
Fibonacci Numbers	

Stage 0, I nitial Condition, or Base Case: Fib(1) = 1; Fib (2) = 1

I nductive Rule For n>3, Fib(n) = Fib(n-1) + Fib(n-2)

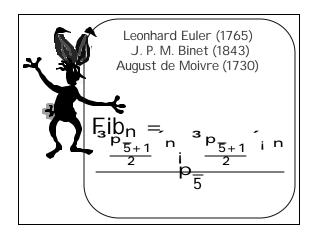

n	0	1	2	3	4	5	6	7
Fib(n)	%	1	1	2	3	5	8	13

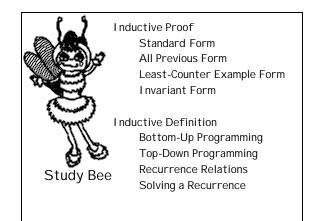

I nductive Definition or Recurrence Relation for the Fibonacci Numbers

Stage O, I nitial Condition, or Base Case: Fib(O) = O; Fib (1) = 1

I nductive Rule For n>1, Fib(n) = Fib(n-1) + Fib(n-2)

n	0	1	2	3	4	5	6	7
Fib(n)	0	1	1	2	3	5	8	13





Stage O, I nitial Condition, or Base Case: Fib(0) = 0; Fib (1) = 1

I nductive Rule For n>1, Fib(n) = Fib(n-1) + Fib(n-2)

n	0	1	2	3	4	5	6	7
Fib(n)	0	1	1	2	3	5	8	13

