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Induction: One Step At A Time

Carnegie Mellon UniversityJan 11, 2005Lecture 1
CS 15-251       Spring 2005Steven Rudich

Great Theoretical Ideas In Computer Science

Today we will talk 
about 

INDUCTION

Induction is the 
primary way we:

1. Prove theorems
2.Construct and 

define objects

Let’s start with dominoes

Domino Principle: Line up any 
number of dominos in a row; 
knock the first one over and 

they will all fall.

n dominoes numbered 1 to n

Fk ´ The kth domino falls

If we set them all up in a row then we 
know that each one is set up to knock 
over the next one:

For all 1 = k < n:
Fk ) Fk+1
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n dominoes numbered 1 to n

Fk ´ The kth domino falls
For all 1 = k < n:

Fk ) Fk+1

F1 ) F2 ) F3 ) …
F1 ) All Dominoes Fall

Computer Scientists 
don’t start numbering 
things at 1, they start at 
0.

YOU will spend a career 
doing this, so GET USED 
TO IT NOW. 

n dominoes numbered 0 to n-1

Fk ´ The kth domino falls
For all 0 = k < n-1:

Fk ) Fk+1

F0 ) F1 ) F2 ) …
F0 ) All Dominoes Fall

Standard Notation/Abbreviation
“for all” is written “8”

Example:

For all k>0, P(k)
is equivalent to

8k>0, P(k)

n dominoes numbered 0 to n-1

Fk ´ The kth domino falls
8 k, 0 = k < n-1:

Fk ) Fk+1

F0 ) F1 ) F2 ) …
F0 ) All Dominoes Fall

The Natural Numbers

N = { 0, 1, 2, 3, . . .}
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The Natural Numbers

N = { 0, 1, 2, 3, . . .}

One domino for each natural number:

0 1 2 3 4 5 ….

The Infinite Domino Principle
Fk ´ The kth domino falls

Suppose F0
Suppose for eachnatural number k,

Fk ) Fk+1

Then All Dominoes Fall!

F0 ) F1 ) F2 ) …

The Infinite Domino Principle
Fk ´ The kth domino falls

Suppose F0
Suppose for eachnatural number k,

Fk ) Fk+1

Then All Dominoes Fall!

Proof: If they do not all fall, there must 
be a least numbered domino d>0 that did 
not fall. Hence, Fd-1 and not Fd . Fd-1 ) Fd. 
Hence, domino d fell and did not fall. 
Contradiction.

Mathematical Induction: 
statements proved instead of

dominoes fallen

Infinite sequence of 
statements: S0, S 1, …
Fk ´ Sk proved

Infinite sequence of
dominoes.
Fk ´ domino k falls

Establish 1) F0
2) 8 k, Fk ) Fk+1

Conclude that Fk is true for all k

Inductive Proof / Reasoning
To Prove ∀k, Sk

Establish “Base Case”:  S0
Establish “Domino Property”: ∀k, Sk ) Sk+1

Assume hypothetically that 
Sk for any particular k; 

Conclude that Sk+1

∀k, Sk ) Sk+1

Inductive Proof / Reasoning
To Prove ∀k, Sk

“Induction Hypothesis” Sk

Use I.H.  to show Sk+1

∀k, Sk ) Sk+1

Establish “Base Case”:  S0
Establish “Domino Property”: ∀k, Sk ) Sk+1
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Inductive Proof / Reasoning
To Prove ∀k¸b, Sk

Establish “Base Case”:  Sb
Establish “Domino Property”: ∀k¸b, Sk ) Sk+1

Assume k¸ b
Assume “Inductive Hypothesis”: Sk

Prove that Sk+1 follows

Theorem?

The sum of the first 
n odd numbers is n2.

Theorem?

The sum of the first 
n odd numbers is n2.

CHECK IT OUT ON SMALL 
VALUES:
1 = 1
1+3 = 4
1+3+5 = 9
1+3+5+7 = 16

Theorem: The sum of 
the first n odd numbers 
is n2.

The kth odd number is 
expressed by the formula 
(2k – 1), when k>0.

Sn ≡
“The sum of the first n 
odd numbers is n2.”

Equivalently, Sn is the 
statement that:
Σ1· k· n (2k-1)
=1 + 3 + 5 + (2k-1) + . . +(2n-1)
= n2

Sn ≡ “The sum of the first n odd numbers is n2.”
“1 + 3 + 5 + (2k-1) + . . +(2n-1)= n2”

Trying to establish that: 8n 1̧ Sn

Base case: S1 is true

The sum of the first 1 odd numbers is 
1.
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Sn ≡ “The sum of the first n odd numbers is n2.”
“1 + 3 + 5 + (2k-1) + . . +(2n-1)= n2”

Trying to establish that: 8n 1̧ Sn

Assume “Induction Hypothesis”: Sk(for any particular ķ 1) 
1+3+5+…+ (2k-1) = k2

Sn ≡ “The sum of the first n odd numbers is n2.”
“1 + 3 + 5 + (2k-1) + . . +(2n-1)= n2”

Trying to establish that: 8n 1̧ Sn

Assume “Induction Hypothesis”: Sk(for any particular k¸ 1) 
1+3+5+…+ (2k-1) = k2

Add (2k+1) to both sides.
1+3+5+…+ (2k-1)+(2k+1) = k2 +(2k+1)
Sum of first k+1 odd numbers = (k+1)2

CONCLUSE: Sk+1

Sn ≡ “The sum of the first n odd numbers is n2.”
“1 + 3 + 5 + (2k-1) + . . +(2n-1)= n2”

Trying to establish that: 8n 1̧ Sn

Established base case: S1

Established domino property: 8 k¸ 1 Sk ) Sk+1

By induction of n, we conclude that:
8n¸1 Sn

THEOREM: 

The sum of the first 
n odd numbers is n2.

Theorem?

The sum of the first 
n numbers is ½n(n+1).

Theorem? The sum of 
the first n numbers is 
½n(n+1).

Try it out on small 
numbers!

1            = 1  = =½ 1(1+1).
1+2 = 3  =½ 2(2+1).
1+2+3 = 6  =½ 3(3+1).
1+2+3+4 = 10=½ 4(4+1).
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Theorem? The sum of 
the first n numbers is 
½n(n+1).

= 0  = =½ 0(0+1).
1            = 1  = =½ 1(1+1).
1+2 = 3  =½ 2(2+1).
1+2+3 = 6  =½ 3(3+1).
1+2+3+4 = 10=½ 4(4+1).

Notation:
∆0= 0 

∆n= 1 + 2 + 3 + . . . + n-1 + n

Let Sn ´
“∆n =n(n+1)/2”

Sn ´ “∆n =n(n+1)/2”
Use induction to prove ∀k¸0, Sk

Establish “Base Case”: S0. ∆0=The sum of the 
first 0 numbers = 0. Setting n=0 the formula 
gives 0(0+1)/2 = 0.

Establish “Domino Property”: ∀k¸0, Sk ) Sk+1

“Inductive Hypothesis” Sk: ∆k =k(k+1)/2 
∆k+1 =  ∆k            + (k+1) 

= k(k+1)/2 + (k+1)   [Using I.H.]
= (k+1)(k+2)/2        [which proves Sk+1]

THEOREM:

The sum of the first 
n numbers is ½n(n+1).

A natural number n>1 
is prime if it has no 
divisors besides 1 and 
itself.

N.B. 
1 is not considered 
prime.

Easy theorem:
Every natural number>1 
can be factored into 
primes.

N.B.:
It is much more subtle to 
argue for the existence 
of a unique prime 
factorization
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Easy theorem:
Every natural number>1 
can be factored into 
primes.
Sn ≡ “n can be factored 
into primes”

S2 is true because 2 is 
prime.

Every natural number>1 
can be factored into 
primes. Base case: 2

Assume 2,3,…..,k-1 all can 
be factored into primes.
Show k can be factored 
into primes.

Assume 2,3,…..,k-1 all can be 
factored into primes.
Show k can be factored into 
primes.

If k is prime, we are done.
If not, k= ab where 1<a,b<k, 
hence a and b can be factored 
into primes. Thus, k is the 
product of the factors of a and 
the factors of b.

This illustrates a 
technical point 
about using and 

defining 
mathematical 

induction.

All Previous Induction
To Prove ∀k, Sk

Establish “Base Case”:  S0

Establishthat ∀k, Sk ) Sk+1

Let k be any natural number.
Induction Hypothesis: 

Assume  ∀j<k, Sj

Derive Sk

“Strong” Induction
To Prove ∀k, Sk

Establish “Base Case”:  S0

Establishthat ∀k, Sk ) Sk+1

Let k be any natural number.
Assume  ∀j<k, Sj

Prove Sk
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Least Counter-Example 
Induction to Prove ∀k, Sk

Establish “Base Case”:  S0
Establishthat ∀k, Sk ) Sk+1

Assume that Sk is the least counter-
example.
Derive the existence of a smaller 
counter-example

All numbers > 1 has a 
prime factorization.

Let n be the least 
counter-example.  n 

must not be prime – so n 
= ab. If both a and b had 

prime factorizations, 
then n would. Thus 

either a or b is a smaller 
counter-example.

Inductive reasoning is 
the high level idea:

“Standard” Induction

“Least Counter-example”
“All Previous” Induction 

all just 
different packaging.

“All Previous” Induction
Can Be Repackaged As
Standard Induction

Establish “Base Case”:  S0

Establish that ∀k, Sk ) Sk+1

Let k be any natural number.
Assume  ∀j<k, Sj

Prove Sk

Define Ti = ∀j· i, Sj

Establish “Base Case”:  T0

Establish that ∀k, Tk ) Tk+1

Let k be any natural number.
Assume T k-1

Prove Tk

Induction is also how we 
can define and 

construct our world.

So many things, from 
buildings to computers, 

are built up stage by 
stage, module by 

module, each depending 
on the previous stages.
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Well, 
almost 
always

Inductive Definition Of Functions

Stage 0, Initial Condition, or Base Case:
Declare the value of the function on some 
subset of the domain. 

Inductive Rules
Define new values of the function in terms of
previously defined values of the function

F(x) is defined if and only if it is implied by 
finite iteration of the rules. 

Inductive Definition Of Functions

Stage 0, Initial Condition, or Base Case:
Declare the value of the function on some 
subset of the domain. 

Inductive Rules
Define new values of the function in terms of
previously defined values of the function

If there is an x such that F(x) has more than 
one value – then the whole inductive definition 
is said to be inconsistent. 

Inductive Definition 
Recurrence Relation for F(X)

Initial Condition, or Base Case:
F(0) = 1

Inductive Rule
For n>0, F(n) = F(n-1) + F(n-1)

1

0

F(n)

7654321n

Inductive Definition 
Recurrence Relation for F(X)

Initial Condition, or Base Case:
F(0) = 1

Inductive Rule
For n>0, F(n) = F(n-1) + F(n-1)

1

0

2F(n)

7654321n

Inductive Definition 
Recurrence Relation for F(X)

Initial Condition, or Base Case:
F(0) = 1

Inductive Rule
For n>0, F(n) = F(n-1) + F(n-1)

1

0

42F(n)

7654321n
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Inductive Definition 
Recurrence Relation for F(X)

Initial Condition, or Base Case:
F(0) = 1

Inductive Rule
For n>0, F(n) = F(n-1) + F(n-1)

1

0

128643216842F(n)

7654321n

Inductive Definition 
Recurrence Relation for F(X) = 2X

Initial Condition, or Base Case:
F(0) = 1

Inductive Rule
For n>0, F(n) = F(n-1) + F(n-1)

1

0

128643216842F(n)

7654321n

Inductive Definition 
Recurrence Relation

Initial Condition, or Base Case:
F(1) = 1

Inductive Rule
For n>1, F(n) = F(n/2) + F(n/2)

0

1F(n)

7654321n

Inductive Definition 
Recurrence Relation

Initial Condition, or Base Case:
F(1) = 1

Inductive Rule
For n>1, F(n) = F(n/2) + F(n/2)

0

21F(n)

7654321n

Inductive Definition 
Recurrence Relation

Initial Condition, or Base Case:
F(1) = 1

Inductive Rule
For n>1, F(n) = F(n/2) + F(n/2)

0

421F(n)

7654321n

Inductive Definition 
Recurrence Relation

Initial Condition, or Base Case:
F(1) = 1

Inductive Rule
For n>1, F(n) = F(n/2) + F(n/2)

%

0

%%%4%21F(n)

7654321n
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Inductive Definition 
Recurrence Relation

F(X) = X for X a whole power of 2.

Initial Condition, or Base Case:
F(1) = 1

Inductive Rule
For n>1, F(n) = F(n/2) + F(n/2)

%

0

%%%4%21F(n)

7654321n

Base Case: 8x2N P(X,0) = X
Inductive Rule: 

8x,y2N, y>0, P(x,y) = P(x,y-1) + 1

0

76543210P(x,y)

1

3

2

Base Case: 8x2N P(X,0) = X
Inductive Rule: 

8x,y2N, y>0, P(x,y) = P(x,y-1) + 1

00

76543210P(x,y)

11

3

2

3

2

Base Case: 8x2N P(X,0) = X
Inductive Rule: 

8x,y2N, y>0, P(x,y) = P(x,y-1) + 1

100

76543210P(x,y)

211

3

2

43

32

Base Case: 8x2N P(X,0) = X
Inductive Rule: 

8x,y2N, y>0, P(x,y) = P(x,y-1) + 1

2100

76543210P(x,y)

3211

3

2

543

432

Base Case: 8x2N P(X,0) = X
Inductive Rule: 

8x,y2N, y>0, P(x,y) = P(x,y-1) + 1

765432100

76543210P(x,y)

876543211

3

2

109876543

98765432
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Base Case: 8x2N P(X,0) = X
Inductive Rule: 

8x,y2N, y>0, P(x,y) = P(x,y-1) + 1

765432100

76543210X+Y

876543211

3

2

109876543

98765432

Definition of P:

8x2N P(X,0) = X
8x,y2N, y>0, P(x,y) = P(x,y-1) + 1

Any inductive definition with a 
finite number of base cases, can 
be translated into a program. The 
program simply calculates from 

the base cases on up.

Definition of P:

8x2{0,1,2,3}  P(X,0) = X
8x,y2N, y>0, P(x,y) = P(x,y-1) + 1

What would be the bottom up
implementation of P?

For k = 0 to 3  
P(k,0)=k

For j = 1 to 7
For k = 0 to 3

P(k,j) = P(k,j-1) + 1

765432100

76543210P(x,y)

876543211

3

2

109876543

98765432

Bottom-Up 
Program for P

Suppose we wanted to 
know P(2,3) in 

particular, but we had 
not yet done any 

calculation.

Base Case: 8x2N P(X,0) = X
Inductive Rule: 

8x,y2N, y>0, P(x,y) = P(x,y-1) + 1

0

76543210P(x,y)

1

3

?2
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Base Case: 8x2N P(X,0) = X
Inductive Rule: 

8x,y2N, y>0, P(x,y) = P(x,y-1) + 1

0

76543210P(x,y)

1

3

??2

Base Case: 8x2N P(X,0) = X
Inductive Rule: 

8x,y2N, y>0, P(x,y) = P(x,y-1) + 1

0

76543210P(x,y)

1

3

???2

Base Case: 8x2N P(X,0) = X
Inductive Rule: 

8x,y2N, y>0, P(x,y) = P(x,y-1) + 1

0

76543210P(x,y)

1

?

3

???2

Base Case: 8x2N P(X,0) = X
Inductive Rule: 

8x,y2N, y>0, P(x,y) = P(x,y-1) + 1

0

76543210P(x,y)

1

2

3

???2

Base Case: 8x2N P(X,0) = X
Inductive Rule: 

8x,y2N, y>0, P(x,y) = P(x,y-1) + 1

0

76543210P(x,y)

1

2

3

??32

Base Case: 8x2N P(X,0) = X
Inductive Rule: 

8x,y2N, y>0, P(x,y) = P(x,y-1) + 1

0

76543210P(x,y)

1

2

3

?432
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Base Case: 8x2N P(X,0) = X
Inductive Rule: 

8x,y2N, y>0, P(x,y) = P(x,y-1) + 1

0

76543210P(x,y)

1

2

3

5432

Procedure P(x,y):
If y=0 return x
Otherwise return P(x,y-1)+1;

0

76543210P(x,y)

1

2

3

5432

Top Down

Procedure P(x,y):
If y=0 return x
Otherwise return P(x,y-1)+1;

0

76543210P(x,y)

1

2

3

5432

Recursive
Programming

Top-Down, Recursive Program:
Procedure P(x,y):

If y=0 return x
Otherwise return P(x,y-1)+1;

Inductive Definition:
8x2N P(X,0) = X

8x,y2N , y>0, P(x,y ) = P(x,y-1) + 1

Bottom-Up, Iterative Program:
For k = 0 to 3  

P(k,0)=k
For j = 1 to 7

For k = 0 to 3
P(k,j) = P(k,j-1) + 1

Leonardo Fibonacci

In 1202, Fibonacci proposed a problem 
about the growth of rabbit populations.

Leonardo Fibonacci

In 1202, Fibonacci proposed a problem 
about the growth of rabbit populations.
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Leonardo Fibonacci

In 1202, Fibonacci proposed a problem 
about the growth of rabbit populations.

The rabbit reproduction model
•A rabbit lives forever
•The population starts as a single newborn pair
•Every month, each productive pair begets a 
new pair which will become productive after 2 
months old

Fn= # of rabbit pairs at the beginning of the 
nth month

13853211rabbits

7654321month

The rabbit reproduction model
•A rabbit lives forever
•The population starts as a single newborn pair
•Every month, each productive pair begets a 
new pair which will become productive after 2 
months old

Fn= # of rabbit pairs at the beginning of the 
nth month

13853211rabbits

7654321month

The rabbit reproduction model
•A rabbit lives forever
•The population starts as a single newborn pair
•Every month, each productive pair begets a 
new pair which will become productive after 2 
months old

Fn= # of rabbit pairs at the beginning of the 
nth month

13853211rabbits

7654321month

The rabbit reproduction model
•A rabbit lives forever
•The population starts as a single newborn pair
•Every month, each productive pair begets a 
new pair which will become productive after 2 
months old

Fn= # of rabbit pairs at the beginning of the 
nth month

13853211rabbits

7654321month

The rabbit reproduction model
•A rabbit lives forever
•The population starts as a single newborn pair
•Every month, each productive pair begets a 
new pair which will become productive after 2 
months old

Fn= # of rabbit pairs at the beginning of the 
nth month

13853211rabbits

7654321month
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The rabbit reproduction model
•A rabbit lives forever
•The population starts as a single newborn pair
•Every month, each productive pair begets a 
new pair which will become productive after 2 
months old

Fn= # of rabbit pairs at the beginning of the 
nth month

13853211rabbits

7654321month

The rabbit reproduction model
•A rabbit lives forever
•The population starts as a single newborn pair
•Every month, each productive pair begets a 
new pair which will become productive after 2 
months old

Fn= # of rabbit pairs at the beginning of the 
nth month

13853211rabbits

7654321month

Inductive Definition or  
Recurrence Relation for the

Fibonacci Numbers

Stage 0, Initial Condition, or Base Case:
Fib(1) = 1; Fib (2) = 1

Inductive Rule
For n>3, Fib(n) = Fib(n-1) + Fib(n-2)

%

0

13853211Fib(n)

7654321n

Inductive Definition or  
Recurrence Relation for the

Fibonacci Numbers

Stage 0, Initial Condition, or Base Case:
Fib(0) = 0; Fib (1) = 1

Inductive Rule
For n>1, Fib(n) = Fib(n-1) + Fib(n-2)

0

0

13853211Fib(n)

7654321n

Top-Down, Recursive Program:
Procedure Fib(k)

If k=0 return 0
If k=1 return 1
Otherwise return Fib(k-1)+Fib(k-2);

Inductive Definition: 
Fib(0)=0, Fib(1)=1, k>1, Fib(k)=Fib(k-1)+Fib(k-2)

Bottom-Up, Iterative Program:
Fib(0) = 0; Fib(1) =1;
Input x;
For k= 2 to x do Fib(x)=Fiib(x-1)+Fib(x-2);
Return Fib(k);

What is a closed form formula for 
Fib(n) ????

Stage 0, Initial Condition, or Base Case:
Fib(0) = 0; Fib (1) = 1

Inductive Rule
For n>1, Fib(n) = Fib(n-1) + Fib(n-2)

0

0

13853211Fib(n)

7654321n
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Leonhard Euler (1765)
J. P. M. Binet (1843)

August de Moivre (1730)

Fibn =³ p
5+1
2

´n
¡

³ p
5+1
2

´¡n

p
5 Study Bee

Inductive Proof
Standard Form
All Previous Form
Least-Counter Example Form
Invariant Form

Inductive Definition
Bottom-Up Programming
Top-Down Programming
Recurrence Relations
Solving a Recurrence


