| Great Theoretical Ideas In Computer Science | | |
| :--- | :--- | :--- | :--- |
| Steven Rudich | | CS $15-251 \quad$ Spring 2005 |
| Secture 1 | Ian 11,2005 | Carnegie Me Ilon Unive rsity |

Induction: One Step $\mathfrak{A t} \mathcal{A}$ Time

Domino Principle: Line up any number of dominos in a row; Knock the first one over and they will all fall.
ndominoes numbered 1 to n
$\mathcal{F}_{\mathrm{K}}{ }^{\prime}$ The ${ }^{\text {th }}$ domino falls

If we set them all up in a rowthen we know that each one is set up to Knock over the next one:

For all $1=\kappa<n$:
$\left.\mathcal{F}_{k}\right) \mathcal{F}_{k+1}$

ndominoes numbered 1 to n
$\mathcal{F}_{k}{ }^{\prime}$ The $K^{\text {th }}$ domino falls
For all $1=\kappa<n$:

$$
\left.\mathcal{F}_{k}\right) \quad \mathcal{F}_{k+1}
$$

$\left.\left.\left.\mathcal{F}_{1}\right) \quad \mathcal{F}_{2}\right) \quad \mathcal{F}_{3}\right) \quad \ldots$
$\left.\mathcal{F}_{1}\right) \mathcal{A l l} \mathcal{D o m i n o e s} \mathfrak{F a l l}$

ndominoes numbered 0 to $n-1$
$\mathcal{F}_{k}{ }^{\prime}$ The $K^{\text {th }}$ domino falls
For all $0=k<n-1$:

$$
\left.\mathcal{F}_{k}\right) \quad \mathcal{F}_{k+1}
$$

\mathcal{F}_{0}) \mathcal{F}_{1}) \mathcal{F}_{2}) \ldots
$\left.\mathcal{F}_{0}\right) \quad$ All $\mathcal{D o m i n o e s} \mathfrak{F a l l}$

Standard \mathcal{N} otation/Ab6reviation "for all" is written "8"

Example:

For all $\mathcal{K}>0, \mathcal{P}(\kappa)$
is equivalent to $8 k>0, P(k)$

The $\mathcal{N a t u r a l} \mathcal{N u m b e r s}$

$\mathbb{N}=\{0,1,2,3, \ldots\}$

The $\mathcal{N a t u r a l} \mathfrak{N}$ umbers

$\mathbb{N}=\{0,1,2,3, \ldots\}$

One domino for each natural number:

The Infinite Domino Principle

\mathcal{F}_{k} ' The $K^{\text {th }}$ domino falls

Suppose \mathcal{F}_{0}
Suppose for eacf natural number \mathcal{K}, $\left.\mathcal{F}_{k}\right) \quad \mathcal{F}_{k+1}$
Then $\mathcal{A l l}$ Dominoes $\mathcal{F a l l !}$

Proof: If they do not all fall, there must be a le ast numbered domino $d>0$ that did not fall. Hence, \mathcal{F}_{d-1} and not $\mathcal{F}_{d} . \mathcal{F}_{d-1}$) \mathcal{F}_{d}. Hence, domino d fell and did not fall. Contradiction.

The Infinite Domino Principle \mathcal{F}_{k} 'The $K^{\text {th }}$ domino falls

Suppose \mathcal{F}_{0}
Suppose for each natural number κ, $\left.\mathcal{F}_{k}\right) \quad \mathcal{F}_{k+1}$
Then $\mathcal{A l l}$ Dominoes $\mathcal{F a l l !}$

$$
\left.\left.\left.\mathcal{F}_{0}\right) \quad \mathcal{F}_{1}\right) \quad \mathcal{F}_{2}\right) \ldots
$$

\square
Infinite sequence of Infinite sequence of
dominoes. statements: $S_{0^{\prime}} S_{1}, \ldots$
$\mathcal{F}_{k}{ }^{\prime}$ domino K falls $\mathcal{F}_{k}{ }^{\prime} \mathcal{S}_{k}$ proved

Establisf 1) \mathcal{F}_{0}

$$
\text { 2) } \left.8 k, \mathcal{F}_{k}\right) \quad \mathcal{F}_{k+1}
$$

Conclude that \mathcal{F}_{k} is true for all \mathcal{K}

Inductive Proof / Re asoning To Prove $\forall k, S_{k}$

Establish "Base Case": So
Establish "Domino Property": $\left.\forall \kappa, \mathcal{S}_{\kappa}\right) \quad \mathcal{S}_{\kappa+1}$
$\left.\forall K, S_{k}\right) \quad S_{k+1}\left\{\begin{array}{l}\begin{array}{l}\text { Assume fypothetically that } \\ S_{k} \text { for any particular } K_{i} \\ \text { Conclude that } S_{k+1}\end{array}\end{array}\right.$

Inductive Proof / Reasoning
To Prove $\forall \kappa, S_{\kappa}$

Establish "Base Case": S_{0}
Establish "Domino Property": $\left.\forall k, S_{\kappa}\right) \quad \mathcal{S}_{k+1}$
$\left.\forall K, S_{K}\right) \quad S_{K+1}\left\{\begin{array}{l}\text { "Induction Hypothesis" } S_{K} \\ \frac{\text { Ilse I.H. to show } S_{K+1}}{}\end{array}\right.$

Inductive Proof / Reasoning To Prove $\forall \mathcal{K}, \boldsymbol{6}, \mathcal{S}_{\mathrm{K}}$

Establish"Base Case": S_{6}
Establisf "Domino Property": $\forall \kappa, 6, \mathcal{S}_{\kappa}$) $\mathcal{S}_{\kappa+1}$
Assume $\kappa, 6$
Assume "Inductive Hypothesis": \mathcal{S}_{κ} Prove that \mathcal{S}_{k+1} follows

$\mathcal{S}_{n} \equiv$ "The sum of the first n odd numbers is n^{2}."
$" 1+3+5+(2 k-1)+\ldots+(2 n-1)=n^{2} "$
Trying to establish that: $8 n, 1 \mathcal{S}_{n}$

Base case: \mathcal{S}_{1} is true

The sum of the first 1 odd numbers is 1.
$S_{n} \equiv$ "The sum of the first n odd numbers is n^{2}."
$" 1+3+5+(2 k-1)+\ldots+(2 n-1)=n^{2} "$
Trying to establish that: $8 n, 1 \mathcal{S}_{n}$

Assume "Induction Hypothe sis": S_{κ} (for any particular K. 1)
$1+3+5+\ldots+(2 k-1)=k^{2}$
$S_{n} \equiv$ "The sum of the first nodd numbers is n^{2}."
$" 1+3+5+(2 k-1)+\ldots+(2 n-1)=n^{2} "$
Trying to establisf that: $8 n, 1 S_{n}$
$\frac{\text { Assume "Induction Hypothesis": } S_{K}}{(\text { for any particular } k, ~ 1)}$

$$
1+3+5+\ldots+(2 k-1)=k^{2}
$$

Add $(2 k+1)$ to 6 oth sides.
$1+3+5+\ldots+(2 k-1)+(2 k+1)=k^{2}+(2 k+1)$
S um of first $k+1$ odd numbers $=(\kappa+1)^{2}$ CONCLUS E: $S_{\underline{K+1}}$
$S_{n} \equiv$ "The sum of the first n odd numbers is n^{2}."
$" 1+3+5+(2 k-1)+\ldots+(2 n-1)=n^{2} "$
Trying to establish that: $8 n, 1 S_{n}$

Established base case: \mathcal{S}_{1}
Establisfied domino property: $\left.8 \mathcal{K}, 1 S_{\kappa}\right) S_{k+1}$
$\mathcal{B} y$ induction of n, we conclude that: $8 n, 1 S_{n}$

Theorem? The sum of the first n numbers is $1 / 2 n(n+1)$.

Try it out on small numbers!

$$
\begin{array}{ll}
1 & =1==1 / 21(1+1) \\
1+2 & =3=1 / 22(2+1) \\
1+2+3 & =6=1 / 23(3+1) \\
1+2+3+4 & =10=1 / 24(4+1)
\end{array}
$$

$$
\frac{\text { All Previous }}{\text { Io Prove }} \forall K, S_{k}
$$

Establist "Base Case": So
Establishthat $\forall k, S_{k}$) S_{k+1}
Let k be any natural number.
Induction Hypothesis:

$$
\mathfrak{A s s u m e} \quad \forall j \nless, \mathcal{S}_{j}
$$

Derive \mathcal{S}_{k}

Establist "Base Case": So Establishthat $\forall k, S_{k}$) S_{k+1}

Let K be any natural number.
Assume $\forall j \nless S_{j}$
Prove S_{k}

Least Counter-Example Induction to Prove $\forall k, S_{\kappa}$

Establisf "Base Case": S_{0} Establisf that $\left.\forall K, \mathcal{S}_{k}\right) \quad \mathcal{S}_{k+1}$

Assume that S_{K} is the least counter example.
Derive the existence of a smaller counter-example

Inductive De finition Of Functions

Stage 0, Initial Condition, or Base Case:
Declare the value of the function on some subset of the domain.

Inductive Rules
Define new values of the function in terms of previously defined values of the function

If there is an x such that $\mathcal{F}(x)$ has more than one value -then the whole inductive definition is said to be inconsistent.

Inductive \mathcal{D} efinition Of $\mathcal{F u n c t i o n s}$

Stage 0, Initial Condition, or Base Case: Declare the value of the function on some subset of the domain.

Inductive Rules
Define ne walues of the function in terms of previously defined values of the function
$\mathcal{F}(x)$ is defined if and only if it is implied $6 y$ finite iteration of the rules.

Inductive Definition

Recurrence Relation for $\mathcal{F}(X)$

Initial Condition, or $\mathcal{B a s e}$ Case:
$\mathcal{F}(0)=1$
Inductive Rule
For $n>0, \mathcal{F}(n)=\mathcal{F}(n-1)+\mathcal{F}(n-1)$

n	0	1	2	3	4	5	6	7
$\mathcal{F}(n)$	1	2						

Initial Condition, or Base Case:
$\mathcal{F}(0)=1$
Inductive Rule
For $n>0, \mathcal{F}(n)=\mathcal{F}(n-1)+\mathcal{F}(n-1)$

n	0	1	2	3	4	5	6	7
$\mathcal{F}(n)$	1							

Inductive De finition Recurrence Relation for $\mathcal{F}(X)$

Inductive $\mathcal{D e}$ finition Recurrence Relation for $\mathcal{F}(X)$

Initial Condition, or $\mathcal{B a s e}$ Case:
$\mathcal{F}(0)=1$
Inductive Rule
For $n>0, \mathcal{F}(n)=\mathcal{F}(n-1)+\mathcal{F}(n-1)$

n	0	1	2	3	4	5	6	7
$\mathcal{F}(n)$	1	2	4					

Inductive $\mathcal{D e}$ finition Recurrence Relation for $\mathcal{F}(X)$

Initial Condition, or Base Case:
$\mathcal{F}(0)=1$
Inductive Rule
For $n>0, \mathcal{F}(n)=\mathcal{F}(n-1)+\mathcal{F}(n-1)$

n	0	1	2	3	4	5	6	7
$\mathcal{F}(n)$	1	2	4	8	16	32	64	128

Inductive $\mathcal{D e}$ finition Recurrence Relation

Initial Condition, or $\mathcal{B a s e}$ Case:
$\mathcal{F}(1)=1$
Inductive Rule
For $n>1, \mathcal{F}(n)=\mathcal{F}(n / 2)+\mathcal{F}(n / 2)$

n	0	1	2	3	4	5	6	7
$\mathcal{F}(n)$		1						

Inductive \mathcal{D} efinition

 Recurrence RelationInitial Condition, or $\mathcal{B a s e}$ Case:
$\mathcal{F}(1)=1$
Inductive Rule
For $n>1, \mathcal{F}(n)=\mathcal{F}(n / 2)+\mathcal{F}(n / 2)$

n	0	1	2	3	4	5	6	7
$\mathcal{F}(n)$		1	2		4			

Inductive $\mathcal{D e}$ finition Recurrence Relation for $\mathcal{F}(X)=2^{x}$

Initial Condition, or Base Case:
$\mathcal{F}(0)=1$
Inductive Rule
For $n>0, \mathcal{F}(n)=\mathcal{F}(n-1)+\mathcal{F}(n-1)$

n	0	1	2	3	4	5	6	7
$\mathcal{F}(n)$	1	2	4	8	16	32	64	128

Inductive $\mathcal{D e}$ finition Recurrence Relation								
nitial $(1)=1$			as					
nduc or $n>$								
n	0	1	2	3	4	5	6	7
$\mathcal{F}(n)$		1	2					

Inductive \mathcal{D} efinition Recurrence Relation

Initial Condition, or $\mathcal{B a s e}$ Case:
$\mathcal{F}(1)=1$
Inductive Rule
For $n>1, \mathcal{F}(n)=\mathcal{F}(n / 2)+\mathcal{F}(n / 2)$

n	0	1	2	3	4	5	6	7
$\mathcal{F}(n)$	$\%$	1	2	$\%$	4	$\%$	$\%$	$\%$

Inductive $\mathcal{D e}$ finition Recurrence Relation $\mathcal{F}(X)=X$ for X a whole power of 2 .

Initial Condition, or $\mathcal{B a s e}$ Case:
$\mathcal{F}(1)=1$
Inductive Rule
For $n>1, \mathcal{F}(n)=\mathcal{F}(n / 2)+\mathcal{F}(n / 2)$

n	0	1	2	3	4	5	6	7
$\mathcal{F}(n)$	$\%$	1	2	$\%$	4	$\%$	$\%$	$\%$

Base Case: $8 \times 2 \mathbb{N} P(X, 0)=X$
Inductive Rule:
$8 x, y 2 \mathbb{N}, y>0, P(x, y)=P(x, y-1)+1$

$\mathscr{P}(x, y)$	0	1	2	3	4	5	6	7
0								
1								
2								
3								

[^0]Base Case: $8 \times 2 \mathbb{N} \mathcal{P}(X, 0)=X$
Inductive Rule:
$8 x, y 2 \mathbb{N}, y>0, \mathcal{P}(x, y)=\mathcal{P}(x, y-1)+1$

$x+y$	0	1	2	3	4	5	6	7
0	0	1	2	3	4	5	6	7
1	1	2	3	4	5	6	7	8
2	2	3	4	5	6	7	8	9
3	3	4	5	6	7	8	9	10

For $K=0$ to 3
$\mathscr{P}(\kappa, 0)=\kappa$
For $j=1$ to 7
Bottom- Ulp
Program for \mathcal{P}
For $k=0$ to 3
$\mathcal{P}(k, j)=\mathcal{P}(k, j-1)+1$

$\mathcal{P}(x, y)$	0	1	2	3	4	5	6	7
0	0	1	2	3	4	5	6	7
1	1	2	3	4	5	6	7	8
2	2	3	4	5	6	7	8	9
3	3	4	5	6	7	8	9	10

Base Case : $8 \times 2 \mathbb{N} \mathcal{P}(X, 0)=X$
Inductive Rule:
$8 x, y 2 \mathbb{N}, y>0, \mathcal{P}(x, y)=\mathcal{P}(x, y-1)+1$

$\mathscr{P}(x, y)$	0	1	2	3	4	5	6	7
0								
1								
2				$?$				
3								

Base Case : $8 x 2 \mathbb{N} P(X, 0)=X$
Inductive Rule:
$8 x, y 2 \mathbb{N}, y>0, \mathcal{P}(x, y)=\mathcal{P}(x, y-1)+1$

$P(x, y)$	0	1	2	3	4	5	6	7
0								
1								
2			$?$	$?$				
3								

Base Case: $8 \chi 2 \mathbb{N} \mathcal{P}(X, 0)=X$ Inductive Rule: $8 x, y 2 \mathbb{N}, y>0, \mathcal{P}(x, y)=\mathcal{P}(x, y-1)+1$								
$\mathcal{P}(x, y)$	0	1	2	3	4	5	6	7
0								
1								
2	?	?	?	?				
3								

Base Case: $8 \chi 2 \mathbb{N} P(X, 0)=X$
Inductive Rule:
$8 x, y 2 \mathbb{N}, y>0, \mathcal{P}(x, y)=\mathcal{P}(x, y-1)+1$

$\mathscr{P}(x, y)$	0	1	2	3	4	5	6	7
0								
1								
2	2	3	$?$	$?$				
3								

Base Case : $8 x 2 \mathbb{N} \mathcal{P}(X, 0)=X$ Inductive Rule: $8 x, y 2 \mathbb{N}, y>0, P(x, y)=\mathcal{P}(x, y-1)+1$								
$P(x, y)$	0	1	2	3	4	5	6	7
0								
1								
2	2	3	?	?				
3								

Base Case : $8 x 2 \mathbb{N} P(X, 0)=X$
Inductive Rule:
$8 x, y 2 \mathbb{N}, y>0, \mathcal{P}(x, y)=\mathcal{P}(x, y-1)+1$

$P(x, y)$	0	1	2	3	4	5	6	7
0								
1								
2		$?$	$?$	$?$				
3								

Base Case : $8 \times 2 \mathbb{N} \mathcal{P}(X, 0)=X$
Inductive Rule:
$8 x, y 2 \mathbb{N}, y>0, \mathcal{P}(x, y)=\mathcal{P}(x, y-1)+1$

$P(x, y)$	0	1	2	3	4	5	6	7
0								
1								
2	2	3	4	$?$				
3								

| Base Case: $8 x 2 \mathbb{N} \mathcal{P}(X, 0)=X$ | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Inductive Rule : | | | | | | |
| $8 x, y 2 \mathbb{N}, y>0, \mathcal{P}(x, y)=\mathcal{P}(x, y-1)+1$ | | | | | | |

$\mathcal{P}(x, y)$	0	1	2	3	4	5
0						
1						
2	2	3	4	5		
3						

Procedure $\mathcal{P}(x, y)$: Top Down If $y=0$ return x Otherwise return $\mathcal{P}(x, y-1)+1$;								
$P(x, y)$	0	1	2	3	4	5	6	7
0								
1								
2	2	3	4	5				
3								

Procedure $\mathcal{P}(x, y):$Recursive If $y=0$ return xProgramming Otherwise return $P(x, y-1)+1 ;$								
$\mathcal{P}(\chi, y)$	0	1	2	3	4	5	6	7
0								
1								
2	2	3	4	5				
3								

Leonardo Fibonacci

In 1202, Fibonacci proposed a problem about the growth of rabbit populations.

Le onardo Fibonacci

In 1202 , Fibonacci proposed a problem about the growth of rabbit populations.

Leonardo Fibonacci

In 1202, Fibonacci proposed a problem about the growth of rabbit populations.

The rabbit reproduction model

- A rabbit lives forever
- The population starts as a single ne wborn pair -Every month, each productive pair Gegets a new pair which will become productive after 2 months old
$\mathcal{F}_{n}=$ \# of rabbit pairs at the beginning of the $n^{\text {th }}$ month

month	1	2	3	4	5	6	7
rabbits							

The rabbit reproduction model

- A rabbit lives forever
- The population starts as a single newborn pair -Every month, each productive pair Gegets a ne wair which will become productive after 2 months old
$\mathcal{F}_{n}=$ \# of rabbit pairs at the beginning of the $n^{\text {th }}$ month

month	1	2	3	4	5	6	7
rabbits	1						

The rabbit reproduction model

- A rabbit lives forever
- The population starts as a single newborn pair -Every month, each productive pair Gegets a ne wair which will become productive after 2 months old
$\mathcal{F}_{n}=$ \# of rabbit pairs at the beginning of the $n^{\text {th }}$ month

montf	1	2	3	4	5	6	7
rabbits	1	1					

The rabbit reproduction model

- A rabbit lives forever
- The population starts as a single ne wborn pair -Every month, each productive pair begets a new pair which will become productive after 2 months old
$\mathcal{F}_{n}=$ \# of rabbit pairs at the beginning of the $n^{\text {th }}$ month

month	1	2	3	4	5	6	7	
rabbits	1	1	2					

The rabbit reproduction model

- A rabbit lives forever
- The population starts as a single ne wborn pair
-Every month, each productive pair begets a new pair which will become productive after 2 months old
$\mathcal{F}_{n}=$ \# of rabbit pairs at the beginning of the $n^{\text {th }}$ month

month	1	2	3	4	5	6	7
rab6its	1	1	2	3			

The rabbit reproduction model

- A rabbit lives forever
- The population starts as a single ne wborn pair - Every month, each productive pair begets a new pair which will become productive after 2 months old
$\mathcal{F}_{n}=$ \# of rabbit pairs at the beginning of the $n^{\text {th }}$ month

month	1	2	3	4	5	6	7
rabbits	1	1	2	3	5		

The rabbit reproduction model

- A rabbit lives forever
- The population starts as a single ne wborn pair - Every month, each productive pair begets a ne wair which will become productive after 2 months old
$\mathcal{F}_{n}=$ \# of rabbit pairs at the beginning of the $n^{\text {th }}$ month

montf	1	2	3	4	5	6	7
rabbits	1	1	2	3	5	8	13

Inductive $\mathcal{D e}$ finition or Recurrence Relation for the Fibonacci \mathcal{N} umbers

Stage 0, Initial Condition, or Base Case: $\mathcal{F i b}(1)=1 ; \mathcal{F i b}(2)=1$

Inductive Rule
For $n>3, \mathcal{F} i 6(n)=\mathcal{F i}$ i $(n-1)+\mathcal{F} i 6(n-2)$

n	0	1	2	3	4	5	6	7
$\mathcal{F i} 6(n)$	$\%$	1	1	2	3	5	8	13

Inductive \mathcal{D} efinition:

$\mathcal{F} i \underline{ }(0)=0, \mathcal{F} i \sigma(1)=1, k>1, \mathcal{F} i \sigma(k)=\mathcal{F} i b(k \cdot 1)+\mathcal{F} i \sigma(k-2)$

```
Bottom-Ilp, Iterative Program:
Fig(0)=0;\mathcal{Fig(1) =1;}
Input \chi;
For }k=2\mathrm{ to }x\mathrm{ do Fib (x)=FFiib (x-1)+Fib(x-2);
Return Fib(k);
```

$$
\text { If } k=0 \text { return } 0
$$

$$
\text { If } k=1 \text { return } 1
$$

Induc tive De finition or

 Recurrence Relation for the Fibonacci $\mathfrak{N u m b e r s}$Stage 0, Initial Condition, or Base Case: $\mathcal{F i b}(0)=0 ; \mathcal{F i b}^{(1)}=1$

Inductive Rule
For $n>1, \mathcal{F} i b(n)=\mathcal{F i b}(n-1)+\mathcal{F} i b(n-2)$

n	0	1	2	3	4	5	6	7
$\mathcal{F} i 6(n)$	0	1	1	2	3	5	8	13

> What is a closed form formula for Fib(n)????

Stage 0, Initial Condition, or Base Case:
$\mathcal{F i b}(0)=0 ; \mathcal{F i b}(1)=1$
Inductive Rule
For $n>1, \mathcal{F i b}(n)=\mathcal{F i b}(n-1)+\mathcal{F i b}(n-2)$

n	0	1	2	3	4	5	6	7
$\mathcal{F i}(n)$	0	1	1	2	3	5	8	13

[^0]: Base Case: $8 \times 2 \mathbb{N} \mathcal{P}(X, 0)=X$
 Inductive Rule:
 $8 x, y 2 \mathbb{N}, y>0, \mathcal{P}(x, y)=\mathcal{P}(x, y-1)+1$

 | $\mathscr{P}(x, y)$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
 | :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | 0 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
 | 1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
 | 2 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
 | 3 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |

