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15-251
Great Theoretical Ideas 
in Computer Science

Announcements

Final Exam: Tuesday Dec 14, 8:30-11:30am
In GHC 4401 (Rashid)

Review Session:  Err…Dunno?  This will be 
posted.

Plan for Today:

1: On-Line Algorithms

2: Look at Funny Pictures

3: Voting Theory

4: Voting a topic off  the final

5: Cupcake eating contest

Online Algorithms

Lecture 29 (Dec 2, 2010)

Subtitle: A success of  Theory

NP-hardness is not the only hurdle
we face in day-to-day algorithm design

Lack of  information is another…

“Online” algorithms

E.g. Scheduling Jobs on Machines

Input:
A set of  n jobs, each job j has processing time pj

A set of  m identical machines
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Online Algorithms

Instead of  the jobs being given up-front

they arrive one by one (in adversarial order)

you have to schedule each job before seeing
the next one.

What’s a good algorithm?

Graham’s Greedy Algorithm!

Graham’s Greedy Algorithm

Order the jobs j1, j2, …, jn in some order

Assign jt to the least loaded machine so far

Initially all the machines are empty

For t = 1 to n

In fact, this “online” algorithm performs within a
factor of  (2-1/m) of  the best you could do “offline”

Moreover, you did not even need to know
the processing times of  the jobs when they arived.

Online Algorithms

These algorithms see the input requests
one by one, and have to combat lack of  information
from not seeing the entire sequence.

(and maybe have to combat NP-hardness as well).

Example: List Update

You have a linked list of  length n

Given a key as a request, you traverse the list 
until you get to the relevant item. You pay
1 for each link you traverse.

Each item in this list is a (key, data) pair

You are now allowed move
the requested item up the list for free.

Given a sequence of  key requests online, what 
should you do?

5 1 3 4 6 2
data data data data data data

5 1 3 4 6 2
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Ideal Theorem (for this lecture)

The cost incurred by our algorithm 
on any sequence of  requests 

is “not much more” than

the cost incurred by any algorithm 
on the same request sequence.

(We say our algorithm is “competitive”
against all other algorithms
on all request sequences)

Does there exist a 
“competitive” algorithm?

let’s see some candidates…

Algorithm “Do nothing”:

5

Request sequence: 2,2,2,2,2,2,2,2,…

incurs cost 6 for each request

Does badly against the algorithm which first
moves 2 to the head of  the list (paying 6), 
and pays 1 from then on.

1 3 4 6 2

not competitive �

Algorithm “Transpose”:

Every time it sees an element, moves it
one place closer to the head of  the list

5 1 3 4 6 2

Algorithm “Frequency Counter”:

Maintain the list in sorted order of  the
access frequencies

5 1 3 4 6 2

Algorithm “Move to Front”:

Every time it sees an element, moves it up
all the way to the head of  the list

5 1 3 4 6 2
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Which is best?

Algorithm “Transpose”:

Algorithm “Move to Front”:

Algorithm “Frequency Counter”:

For both Transpose and Freq-Count
there are request sequences where
they do far worse than other algorithms

they are not competitive �

Bad example for Transpose

1 2 3 n-1 n…

Request sequence = 
n,n-1,n,n-1,n,n-1,…

Transpose incurs cost n each time

Best strategy: move them to front (pay 2n),
now cost 1 each time.

Bad example for Freq-Count

1 2 3 n-1 n…

Request sequence = 
1 (n times), 2 (n times), …, n (n times), …

Freq-Count does not alter list structure

Good strategy:

⇒ pays n∆n = Θ(n
3) on each set of  n requests

Moves the item to the front on first access,
incurs cost  ∆n + n

2

Algorithm: Move-to-Front

Theorem: The cost incurred by Move-to-Front
is at most twice the cost incurred by any algorithm

even one that knows the entire request 
sequence up-front!

[Sleator Tarjan ‘85]

Proof  is simple but clever. Uses the idea
of  a “potential function” (cf. 15-451)

MTF is “2-competitive” ☺

Observation: if  our list and the other algo’s
lists are in the same order, we incur same cost.

Natural thing to keep track of: 
number of  pairs on which we disagree.

5 1 3 4 2

3 2 4 1 5

5 1 3 4 2

3 2 4 1 5

Number of  transposed pairs

12 13 14 15
23 24 25
34 35
45

= 
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5 1 3 4 2

3 2 4 1 5

Number of  transposed pairs = 

Suppose we get request 2 (cost for us = 4, them = 1)

But number of  transposed pairs
decreased by 2

(25, 21, 24 corrected, 23 broken)

2 5 1 3 4

Theorem: MTF is 2-competitive

Theorem: No (deterministic) algorithm can do better

Theorem: Random MTF (a.k.a. BIT) is better!

Each key also stores an extra bit.
Initialize bits randomly to 0 or 1.

When key is requested, flip its bit.

When key’s bit is flipped to 1, move to front.

This is a 1.75-competitive algorithm!

Many cool combinatorial problems
that arise in analyzing algorithms.

The mathematical tools you’ve learnt in 
this course are extremely relevant 

for their analysis.

Plan for Today:

1: On-Line Algorithms

2: Look at Funny Pictures

3: Voting Theory

4: Voting a topic off  the final

5: Cupcake eating contest
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How Should We Vote?

Lecture 29 (Dec 2, 2010)

Subtitle: A failure of  Theory

n.b.:
Danny’s views, 
not necessarily 

mine
--Anupam

Part 1: The System is Broken
Proof:  The 2000 election.

QED.  (There are many other examples)
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The system we use (called plurality voting, 
where each voter selects one candidate) 
doesn’t work well for 3 or more candidates.

Clearly the “wrong” candidate often wins.

By “wrong” I mean there is a losing candidate 
who would make more people happier than 
the winner.  (We’ll get to defining this more 
precisely later.)

Actually, Gore won the election, as 
shown in a full statewide recount down 
by a consortium of  newspapers.

http://www.nytimes.com/2001/11/12
/politics/recount/12ASSE.html

Little known tangential fact:

Part 2: Ranked Ballots

Nicolas de Caritat, 
marquis de Condorcet, 

1743 to 1794

He studed the 
concept of  ranked 
ballots – having the 
voters rank all the 
candidates

Concorcet’s Analysis

For each pair of  candidates, decide who is 
preferable.  (i.e. wins in more of  the rank 
orderings)

In these matchups, if  there’s one candidate 
who beats all, he/she is the clear winner.

This candidate is called the Condorcet Winner

Example.  Three candidates B, G, and N.

1000
500
500
10
1

B > G > N
G > B > N
G > N > B
N > G > B
N > B > G

Total of  2111 votes.

B>G 1001    G>B 1010    
B>N 1500    N>B 511    

G>N 2000    N>G 11    

G is the Condorcet winner

1
1
1

A > B > C
B > C > A
C > A > B

There might not be a Condorcet winner.

Concorcet’s Paradox

So we have A>B, B>C and C>A
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Dozens of  solutions have been proposed.

Two of  them are:

Borda Counting
Instant Runnof  Voting (IRV)

Proposed Solutions

There are n candidates.

Assign a score by each voter to each 
candidate.  n to the best, n-1 to the 
next and so on down to 1 for the least.

Now compute the candidate with the 
highest total.

Borda Counting

There are n candidates.

Repeat until there’s just one candidate left:

Instant Runoff  Voting (IRV)

Find the candidate with 
the least #1 rankings.

Delete that candidate 
from all ballots.

Borda and IRV are better than plurality, but 
is there a really good system?

The answer is “NO”.  Kenneth Arrow 
proved in 1950 that Democracy is 
impossible.

Things are hopeless.  Forget about it.

Ok, calm down.  What did he actually prove?

Say you have an election function F that takes as 
input the rank orderings of  all the voters and 
outputs a rank ordering.

F(v1, v2, v3,…,vn)

(F is deterministic and not necessarily 
symmetrical on its inputs.)

It would be nice if  F had the following properties:

1. (U) Unanimity If  all votes have A>B then the 
output has A>B.

2. (IIA) Independence of  irrelevant 
alternatives: If  we delete a candidate from 
the election, then the outcome is the same 
except with that candidate missing.

Arrow’s Theorem:

Any voting function that handles 3 or more 
candidates and satisfies U and IIA is a 
dictatorship!

The proof  is not too difficult.

Arrow won the Nobel Prize in economics in part 
for this work.

This theorem derailed the entire field of  social 
choice theory for the last 50 years, as we’ll see.

(A dictatorship I mean that there’s one voter who 
dictates the entire outcome of  the election.)
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Wait, you say.

We really only want to determine a winner.  We 
don’t need the election function to generate a full 
rank ordering.  Surely we can do that.

Good point.  But you’re out of  luck there too.

In the 1970s Gibbard and Satterthwaite proved 
this:  There does not exist a winner selection 
algorithm satisfying these properties:

1. The system is not a dictatorship
2. If  every voter ranks A on top, then A wins
3. It’s deterministic
4. There are at least three candidates
5. It never pays for voters to lie.  That is, if  a voter 

V prefers A to B, then putting B before A in her 
vote cannot cause a better outcome from her 
point of  view.

Part 3: Range Voting

What about the kind of  voting we use 
all the time on the internet.  Like at 
Amazon.com, or HotOrNot, or MRQE?  

Every voter scores each candidate on 
a scale of, say 1 to 10.  Then order the 
candidates by their average vote.

The idea is called range voting (aka 
score voting).

Let’s think about the criteria listed in Arrow’s theorem.

Does range voting satisfy unanimity? 

Of  course.  If  each voter 
scores A above B then A will 
have a higher average than B

Does range voting satisfy IIA?

Of  course.  If  we delete one or 
more candidates from the 
election, then the rest stay the 
same.

Is range voting a dictatorship?

No.  Duh.

RANGE VOTING DOES THE IMPOSSIBLE!

How does it do that?

We’ve changed the rules of  the game laid out by 
Concordet, and followed by the entire field of  social 
choice for 250 years.

We don’t restrict voting to preference lists.  We allow 
scores.  This tiny change fixes these problems.

Oh, and what about the Gibbard Satterthwaite 
theorem?

Again, range voting does the “impossible”.

It satisfies all the criteria at least for three person 
elections.

See: http://www.rangevoting.org/GibbSat.html
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But is there a better way to analyze 
voting systems?

Enter Warren Smith in the late 1990s.

Smith applied a system called Bayesian Regret to 
the analysis of  voting systems.

Oddly, this had never been applied to voting 
systems before.

Bayesian Regret Simulations

1. Each voter has a personal "utility" value for the election of  each 
candidate

2. Now the voters vote, based both on their private utility values, 
and (if  they are strategic voters) on their perception from "pre-
election polls" (also generated artificially within the simulation, 

e.g. from a random subsample of  "people") of  how the other 
voters are going to act.

3. The election system E elects some winning candidate W.
4. The sum over all voters V of  their utility for W, is the "achieved 

societal utility." 

5. The sum over all voters V of  their utility for X, maximized over all 
candidates X, is the "optimum societal utility" which would have 
been achieved if  the election system had magically chosen the 
societally best candidate. 

6. The difference between 5 and 4 is the "Bayesian Regret" of  the 

election system.  It is zero if  W=X, or it could be positive if  W and 
X differ.

See http://www.rangevoting.org/BayRegDum.html

Warren Smith’s Simulations

Smith simulated millions of  election scenarios, 
adjusting the distribution of  strategic voters, 
and the distributions of  private utility values.

Range voting worked the best in *ALL* of  the 
simulations.

The moral of the story

1. In theory we often make assumptions in 
order to prove theorems.

Be careful how you interpret and use the 
theorems.  They can be misleading.

EG: Voting is impossible..

2. Range Voting is the best voting system.

EG: Don’t even bother to try to solve NP 
complete problems.  It’s hopeless.

References

www.rangevoting.org

Gaming the Vote -- Why elections aren’t fair, 
and what we can do about it
by William Poundstone, 2008



12/3/2010

11

We Had Some Lectures

1. Pancakes with a Problem
2. Inductive Reasoning
3. Ancient Wisdom: Unary and Binary
4. Solving Problems, Writing Proofs
5. Games I: Which Player Wins?
6. Games II: Nimbers
7. Counting I: Choice Trees…
8. Counting II: Pascal, Binomials…
9. Counting III: Generating Functions
10. Propositional Logic
11. Probability I: Basic Probability
12. Probability II: Great Expectations
13. Number Theory
14. Cryptography and RSA
15. Algebraic Structures: Groups, Rings, and Fields 
16. Error Correction Codes
17. Probability III:

Infinite sample spaces
Random Walks
Lagrange Interpolation

18. Graphs I: Trees and Planar Graphs
19. Graphs II: Matchings, Tours…

20. Finite Automata and Languages
21. The Stable Marriage Problem
22. How to Add and Multiply
23. Cantor's Legacy: Infinity and Diagonalization
24. Turing's Legacy: The Limits of  Computation
25. Gödel's Legacy: What is a Proof?
26. Efficient Reductions Between Problems
27. Complexity Theory: NP vs P
28. Approximation Algorithms
29. On-Line Algorithms & Voting

You will use 0-5 range voting to pick a topic 
to remove from the final. 

Mark your vote next to each topic.  (No 
mark indicates a 0 vote.)

We will remove the one with the most votes.

Time to Vote!

Plan for Today:

1: On-Line Algorithms

2: Look at Funny Pictures

3: Voting Theory

4: Voting a topic off  the final

5: Cupcake eating contest

Contest

You are now eating manually.

First person to finish his or her cupcake gets
1% extra credit on the final!

I understand that eating cupcakes can be a dangerous 
activity and that, by doing so, I am taking a risk that I 
may be injured.

I hereby assume all the risk described above, even if  
Anupam Gupta, his TAs or agents, through negligence 
or otherwise, otherwise be deemed liable. I hereby 
release, waive, discharge covenant not to sue Anupam 
Gupta, his TAs or any agents, participants, sponsoring 
agencies, sponsors, or others associated with the 

event, and, if  applicable, owners of  premises used to 
conduct the cupcake eating event, from any and all 
liability arising out of  my participation, even if  the 
liability arises out of  negligence that may not be 
foreseeable at this time.

Please don’t choke yourself…


