12/3/2010

15-251

Great Theoretical Ideas
in Computer Science

Announcements

Final Exam: Tuesday Dec 14, 8:30-11:30am
In GHC 4401 (Rashid)

Review Session: Err...Dunno? This will be
posted.

Plan for Today:

1: On-Line Algorithms

2: Look at Funny Pictures

3: Voting Theory

4: Voting a topic off the final

5: Cupcake eating contest

Online Algorithms

Subtitle: A success of Theory

Lecture 29 (Dec 2, 2010)

“Online” algorithms

NP-hardness is not the only hurdle
we face in day-to-day algorithm design

Lack of information is another...

E.g. Scheduling Jobs on Machines

Input:
A set of n jobs, each job j has processing time p;
A set of m identical machines

12/3/2010

Online Algorithms Graham’s Greedy Algorithm

Instead of the jobs being given up-front Order the jobs 3, jz, .., J, in some order

Initially all the machines are empty

they arrive one by one (in adversarial order)

Fort=1ton

you have to schedule each job before seeing Assign j, to the least loaded machine so far
the next one.

In fact, this “online” algorithm performs within a
What's a good algorithm? factor of (2-1/m) of the best you could do “offline”

Moreover, you did not even need to know

Graham’s Greedy Algorithm! the processing times of the jobs when they arived.

Online Algorithms

These algorithms see the input requests
one by one, and have to combat lack of information
from not seeing the entire sequence.

I | | l I | (and maybe have to combat NP-hardness as well).

Example: List Update =5 > 134~ 62|

You have a linked list of length n
Each item in this list is a (key, data) pair

L5 1] 3. 4u] 6] 2.

Given a key as a request, you traverse the list
until you get to the relevant item. You pay
1 for each link you traverse.

You are now allowed move
the requested item up the list for free.

Given a sequence of key requests online, what
should you do?

Ideal Theorem (for this lecture)

The cost incurred by our algorithm
on any sequence of requests

is “not much more” than

the cost incurred by any algorithm
on the same request sequence.

(We say our algorithm is “competitive”
against all other algorithms
on all request sequences)

12/3/2010

Does there exist a
“competitive” algorithm?

let’s see some candidates...

>ls P13 Plale 2]

Algorithm “Do nothing”:

Request sequence: 2,2,2,2,2,2,2.2,...
incurs cost 6 for each request

Does badly against the algorithm which first
moves 2 to the head of the list (paying 6),
and pays 1 from then on.

not competitive ®

>l5 1Pl lale 2]

Algorithm “Transpose”:

Every time it sees an element, moves it
one place closer to the head of the list

=5 P18 lale 2]

Algorithm “Frequency Counter”:

Maintain the list in sorted order of the
access frequencies

=5 >l 1 P84 l6 2]

Algorithm “Move to Front”:

Every time it sees an element, moves it up
all the way to the head of the list

12/3/2010

Which is best?

Algorithm “Transpose”:

Algorithm “Move to Front”:

Algorithm “Frequency Counter”:
For both Transpose and Freq-Count

there are request sequences where
they do far worse than other algorithms

they are not competitive ®

Bad example for Transpose

bz - ~mbln]

Request sequence =
n,n-1,n,n-1,n,n-1,...

Transpose incurs cost n each time

Best strategy: move them to front (pay 2n),
now cost 1 each time.

Bad example for Freq-Count

bzl - ~bln]

Request sequence =
1 (n times), 2 (n times), ..., n (n times), ...

Freg-Count does not alter list structure
= pays nA, = O(n3) on each set of n requests

Good strategy:

Moves the item to the front on first access,
incurs cost A, +n?

Algorithm: Move-to-Front

Theorem: The cost incurred by Move-to-Front
is at most twice the cost incurred by any algorithm

even one that knows the entire request

sequence up-front!
[Sleator Tarjan ‘85]

MTF is “2-competitive” ©

Proof is simple but clever. Uses the idea
of a “potential function” (cf. 15-451)

=5 P18 la 2]
>3 2 la 18]

Observation: if our list and the other algo’s
lists are in the same order, we incur same cost.

Natural thing to keep track of:
number of pairs on which we disagree.

=l P13 lal2]
>3 ppl2 a1 5]

Number of transposed pairs =

12 13 14 15
23 24 25

34 35

45

=5 Pl 3 lal2]
Sl3Pl2 a1 s]

Number of transposed pairs =

Suppose we get request 2 (cost for us = 4, them =1)

»l2 s P13 4]

But number of transposed pairs
decreased by 2

(25, 21, 24 corrected, 23 broken)

12/3/2010

Theorem: MTF is 2-competitive
Theorem: No (deterministic) algorithm can do better

Theorem: Random MTF (a.k.a. BIT) is better!

Each key also stores an extra bit.
Initialize bits randomly to 0 or 1.

When key is requested, flip its bit.

When key'’s bit is flipped to 1, move to front.

This is a 1.75-competitive algorithm!

Many cool combinatorial problems
that arise in analyzing algorithms.

The mathematical tools you’ve learnt in
this course are extremely relevant
for their analysis.

Plan for Today:

1: On-Line Algorithms

2: Look at Funny Pictures

3: Voting Theory

4: Voting a topic off the final

5: Cupcake eating contest

12/3/2010

5

F_ " ¥
i L ."1..
%
Y 'J..-' -'511'
I ¥ '.I | . o=
L & | e
W ¥ 2
/ I A
3 y !) e
£ | 4 _}‘_.r r._:.:\r
" 'iﬂ "
= i
L £ |
,T"'
!
4
l_,l' 1

How Should We Vote?

Subtitle: A failure of Theory

Lecture 29 (Dec 2, 2010) ©

n.b.:
Danny’s views,
not necessarily
mine
--Anupam

Part 1: The System is Broken

Proof: The 2000 election.

Prosidendal candldabe Vobe tolnl %

Party

Geargw W, Bt (W) 2802, 780 A8 04T Bepublican

Al Gore 2H1E35S BB Demncrtic

Wisript Mader AT L BB Gean

Parich J. Bechanen 17484 D284 Raborm

timery tarrame 1\/A418 027 Litertanen

ot Hagidn 2201 [N5A Sakral LasFafoee
Howard Phifios 208 003 Constieton
Crher J0Es onm—

Totsd 5,93 110

Sovrrey: N tthcial prwaidamfind gerrarm) sliction reests 5

QED. (There are many other examples)

12/3/2010

The system we use (called plurality voting, Little known tangentia| fact:
where each voter selects one candidate)

doesn’t work well for 3 or more candidates.

Clearly the “wrong” candidate often wins.
Actually, Gore won the election, as

shown in a full statewide recount down
by a consortium of newspapers.

By “wrong” | mean there is a losing candidate http://www.nytimes.com/2001/11/12

who would make more people happier than "
the winner. (We’ll get to defining this more Ipoliticsirecount/12ASSE. html

precisely later.)

Part 2: Ranked Ballots Concorcet’s Analysis
Nicolas de Caritat,
marquis de Condorcet, For each pair of candidates, decide who is
1743 to 1 794 preferable. (i.e. wins in more of the rank
R T orderings)
i He studed the
concept of rgnked In these matchups, if there’s one candidate
ballots — having the who beats all, he/she is the clear winner.
voters rank all the
candidates
This candidate is called the Condorcet Winner
’
Example. Three candidates B, G, and N. Concorcet’s Paradox
1000 B>G>N
500 G>B>N 1 A>B>C
500 G>N>B 1 B>C>A
10 N>G>B 1 C>A>B
1 N>B>G

Total of 2111 votes. So we have A>B, B>C and C>A

B>G 1001 G>B 1010
B>N 1500 N>B 511

G>N 2000 N>G 11 There might not be a Condorcet winner.

G is the Condorcet winner

Proposed Solutions

Dozens of solutions have been proposed.
Two of them are:

Borda Counting
Instant Runnof Voting (IRV)

12/3/2010

Borda Counting

There are n candidates.

Assign a score by each voter to each
candidate. n to the best, n-1 to the
next and so on down to 1 for the least.

Now compute the candidate with the
highest total.

Instant Runoff Voting (IRV)

There are n candidates.

Repeat until there’s just one candidate left:

Find the candidate with
the least #1 rankings.

Delete that candidate
from all ballots.

Borda and IRV are better than plurality, but
is there a really good system?

The answer is “NO”. Kenneth Arrow
proved in 1950 that Democracy is
impossible.

Things are hopeless. Forget about it.

Ok, calm down. What did he actually prove?

Say you have an election function F that takes as
input the rank orderings of all the voters and
outputs a rank ordering.

F(v1,v2,v3,...,vn)

(F is deterministic and not necessarily
symmetrical on its inputs.)

It would be nice if F had the following properties:

1. (U) Unanimity If all votes have A>B then the
output has A>B.

2. (I1A) Independence of irrelevant
alternatives: If we delete a candidate from
the election, then the outcome is the same
except with that candidate missing.

Arrow’s Theorem:

Any voting function that handles 3 or more
candidates and satisfies U and llA is a
dictatorship!

(A dictatorship | mean that there’s one voter who
dictates the entire outcome of the election.)

The proof is not too difficult.
Arrow won the Nobel Prize in economics in part

for this work.

This theorem derailed the entire field of social
choice theory for the last 50 years, as we’ll see.

Wait, you say.

We really only want to determine a winner. We
don’t need the election function to generate a full
rank ordering. Surely we can do that.

Good point. But you’re out of luck there too.

12/3/2010

In the 1970s Gibbard and Satterthwaite proved
this: There does not exist a winner selection
algorithm satisfying these properties:

. The system is not a dictatorship

. If every voter ranks A on top, then A wins

. It’s deterministic

. There are at least three candidates

. It never pays for voters to lie. Thatis, if a voter
V prefers A to B, then putting B before A in her
vote cannot cause a better outcome from her
point of view.

NHWN =

Part 3: Range Voting

What about the kind of voting we use
all the time on the internet. Like at
Amazon.com, or HotOrNot, or MRQE?

Every voter scores each candidate on
a scale of, say 1 to 10. Then order the
candidates by their average vote.

The idea is called range voting (aka
score voting).

Let’s think about the criteria listed in Arrow’s theorem.

Does range voting satisfy unanimity?

Of course. If each voter
scores A above B then A will
have a higher average than B

Does range voting satisfy I1A?

Of course. If we delete one or
more candidates from the
election, then the rest stay the
same.

Is range voting a dictatorship?
No. Duh.

RANGE VOTING DOES THE IMPOSSIBLE!
How does it do that?
We’ve changed the rules of the game laid out by

Concordet, and followed by the entire field of social
choice for 250 years.

We don’t restrict voting to preference lists. We allow
scores. This tiny change fixes these problems.

Oh, and what about the Gibbard Satterthwaite
theorem?

Again, range voting does the “impossible”.

It satisfies all the criteria at least for three person
elections.

See: http://Iwww.rangevoting.org/GibbSat.html|

But is there a better way to analyze
voting systems?
Enter Warren Smith in the late 1990s.

Smith applied a system called Bayesian Regret to
the analysis of voting systems.

Oddly, this had never been applied to voting
systems before.

12/3/2010

Bayesian Regret Simulations

1. Each voter has a personal "utility" value for the election of each
candidate

2. Now the voters vote, based both on their private utility values,

and (if they are strategic voters) on their perception from "pre-

election polls” (also generated artificially within the simulation,

e.g. from a random subsample of "people”) of how the other

voters are going to act.

The election system E elects some winning candidate W.

The sum over all voters V of their utility for W, is the "achieved

societal utility."”

5. The sum over all voters V of their utility for X, maximized over all
candidates X, is the "optimum societal utility” which would have
been achieved if the election system had magically chosen the
societally best candidate.

6. The difference between 5 and 4 is the "Bayesian Regret" of the
election system. Itis zero if W=X, or it could be positive if W and
X differ.

H>w

See http://www.rangevoting.org/BayRegDum.html

Warren Smith’s Simulations

Smith simulated millions of election scenarios,
adjusting the distribution of strategic voters,
and the distributions of private utility values.

Range voting worked the best in *ALL* of the
simulations.

The moral of the story

1. In theory we often make assumptions in
order to prove theorems.

Be careful how you interpret and use the
theorems. They can be misleading.

EG: Voting is impossible..

EG: Don’t even bother to try to solve NP
complete problems. It’s hopeless.

2. Range Voting is the best voting system.

References

www.rangevoting.org

Gaming the Vote -- Why elections aren’t fair,
and what we can do about it
by William Poundstone, 2008

10

12/3/2010

CEINONPON2

We Had Some Lectures Time to Vote!

Pancakes with a Problem 20. Finite Automata and Languages

Inductive Reasoning 21. The Stable Marriage Problem

Ancient Wisdom: Unary and Binary 22. How to Add and Multiply

Solving Problems, Writing Proofs 23. Cantor's Legacy: Infinity and Diagonalization

Games |I: Which Player Wins? 24. Turing's Legacy: The Limits of Computation

Games lI: Nimbers 25. Godel's Legacy: What is a Proof?

Counting I: Choice Trees... 26. Efficient Reductions Between Problems H H H H
Counting II: Pascal, Binomials... 27. Complexity Theory: NP vs P You WI" use 0-5 range VOt'ng to p'ck a toplc
Counting lll: Generating Functions 28. Approximation Algorithms H

Propositional Logic 29. On-Line Algorithms & Voting to remove from the f'na l M

Probability I: Basic Probability
Probability II: Great Expectations
Number Th i
B orer ol RSA Mark your vote next to each topic. (No
Al i : , Rings, i i i
Algebralo Structures: Groups, Rings, and Fields mark indicates a 0 vote.)
Probability III:

Infinite sample spaces

Random Walk: i i

et polation We will remove the one with the most votes.
Graphs I: Trees and Planar Graphs
Graphs |I: Matchings, Tours...

Plan for Today: Contest

1: On-Line Algorithms

. You are now eating manually.
2: Look at Funny Pictures

First person to finish his or her cupcake gets

3: Voting Theory 1% extra credit on the final!

4: Voting a topic off the final

5: Cupcake eating contest

| understand that eating cupcakes can be a dangerous
activity and that, by doing so, | am taking a risk that |
may be injured.

| hereby assume all the risk described above, even if
Anupam Gupta, his TAs or agents, through negligence
or otherwise, otherwise be deemed liable. | hereby
release, waive, discharge covenant not to sue Anupam
Gupta, his TAs or any agents, participants, sponsoring
agencies, sponsors, or others associated with the
event, and, if applicable, owners of premises used to
conduct the cupcake eating event, from any and all
liability arising out of my participation, even if the
liability arises out of negligence that may not be
foreseeable at this time.

Please don’t choke yourself...

11

