15-251

Great Theoretical Ideas in Computer Science

Approximation and Online Algorithms

Lecture 28 (November 30, 2010)

In the previous lecture, we saw two problem classes:
P and NP

The Class P

We say a set $L \subseteq \Sigma^*$ is in P if there is a program A and a polynomial p()

such that for any x in Σ^* ,

A(x) runs for at most p(|x|) time and answers question "is x in L?" correctly.

The Class P

The class of all sets L that can be recognized in polynomial time.

The class of all decision problems that can be decided in polynomial time.

Ρ

contains many useful problems:

- · graph connectivity
- · minimum spanning tree
- · matchings in graphs
- shortest paths
- solving linear systems Ax = b
- linear programming
- maximum flows

Many of this we will (re)visit in 15-451.

NP

A set $L \in NP$

t L ∈ NP ຜູ√ຍາ່∫ຍ√ if there exists an algorithm V and a polynomial p() such that

For all $x \in L$

there exists y with $|y| \le p(|x|)$

such that V(x,y) = YES

in p(|x|) time

"exists a quickly-verifiable proof"

For all x' ∉ L

For all y' with $|y'| \le p(|x'|)$

such that V(x',y') = NO

in p(|x|) time

"all non-proofs rejected"

The Class NP

The class of sets L for which there exist "short" proofs of membership (of polynomial length) that can be "quickly" verified

(in polynomial time).

Recall: V doesn't have to find these proofs y; it just needs to be able to verify that y is a "correct" proof.

$P \subset NP$

For any L in P. we take the "proof" y to be the empty string, and V(x,y) = A(x)to satisfy the requirements.

Hence, every language in P is also in NP.

in this case, "the computation is the proof"

Summary: P versus NP

Set L is in P if membership in L can be decided in poly-time.

Set L is in NP if each x in L has a short "proof of membership" that can be verified in poly-time.

Fact: $P \subseteq NP$

Million (Billion) \$ question: Does NP ⊆ P?

NP-hard and NP-complete

L is NP-hard if a polynomial-time algorithm for L implies a polynomial-time algorithm for all of NP

to show NP-hardness for L, find another NP-hard problem (say SAT), and reduce SAT to L.

L is NP-complete if L is NP-hard and Litself belongs to NP.

NP Contains Lots of Problems We Don't Know to be in P

Classroom Scheduling Packing objects into bins Scheduling jobs on machines Finding cheap tours visiting a subset of cities Allocating variables to registers Finding good packet routings in networks Decryption

What do we do now?

We'd really like to solve these problems.

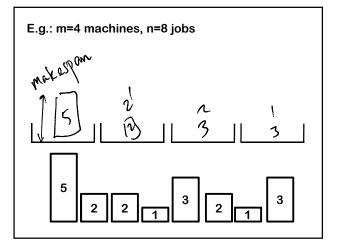
But we don't know how to solve them in polynomial time...

A solution for some of these: Try to solve them "approximately"

E.g. Scheduling Jobs on Machines

Input:

A set of n jobs, each job j has processing time \mathbf{p}_{j} A set of m identical machines



E.g. Scheduling Jobs on Machines

Input:

A set of n jobs, each job j has processing time \mathbf{p}_j A set of m identical machines

Allocate these n jobs to these m machines to minimize the load of the worst-loaded machine.

(We call this objective function the "makespan")

We call this problem MinMakespan Is MinMakespan NP-hard?

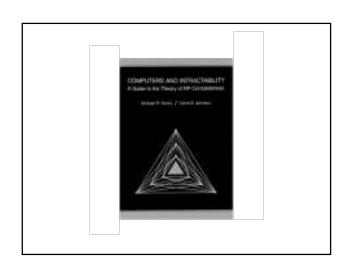
NP hardness proof

To prove NP hardness, find a problem such that $% \left(\mathbf{r}\right) =\mathbf{r}^{\prime }$

a) that problem is itself NP hard

b) if you can solve MinMakespan quickly, you can solve that problem quickly

Can you suggest such a problem?



The (NP hard) Partition Problem

Given a set A = $\{a_1, a_2, ..., a_n\}$ of n naturals which sum up to 2B (B is a natural), does there exist a subset of these that sums to exactly B?

Call this problem "Partition"

so we've found a problem Partition such that:

a) Partition is NP hard (4, howy - Johnson San

b) if you can solve MinMakespan quickly, you can solve Partition quickly

Take any instance (A = $\{a_1, ..., a_n\}$, B) of Partition

Each natural number in A corresponds to a job. The processing time $p_i = a_i$

We have m = 2 machines.

Easy Theorem: there is a solution with makespan = B iff there is a partition of A into two equal parts.

- ⇒ if you solve Makespan fast, you solve Partition fast.
- ⇒ if Partition is hard, Makespan is hard.

MinMakespan Partition

NP-hard

If MinMakespan then Partition in polynomial-time in polynomial-time

we just took an instance of Partition and reduced it to MinMakespan

then MinMakespan so, if Partition is also hard is hard

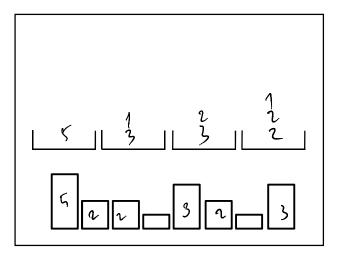
hence MinMakespan NP-hard

What do we do now???

Finding the best solution is hard

but can we find something that is not much worse than the best?

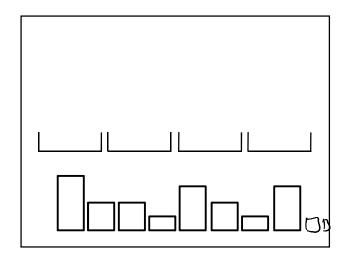
Can you suggest an algorithm?



Graham's Greedy Algorithm

Order the jobs $j_1, j_2, ..., j_n$ in some order Initially all the machines are empty For t=1 to n

Assign j_t to the least loaded machine so far



Graham's Greedy Algorithm

Order the jobs $j_1, j_2, ..., j_n$ in some order Initially all the machines are empty For t = 1 to nAssign jt to the least loaded machine so far

Theorem: The $Makespan_{GGA}$ of this algorithm is at most 2 × OptimalMakespan

How do you argue what the optimal value is?

Suppose you could show that

- 1. Makespan $_{\text{GGA}}\!\leq\!2$ Blah, and
- 2. Blah ≤ OPT,

then you are done.

Two candidates for "Blah"

Claim 1: $p_{max} \le OPT$

Proof: At least one machine gets the largest job.

Claim 2: $(\sum_{t \le n} p_t)/m \le OPT$

Proof: At least one machine must have at least the average load.

OPT may be much larger than either of these two.

 p_{max} $(\sum_{t \le n} p_t)/m$

E.g., n jobs of size 1 OPT = n/m, $p_{max} = 1$

E.g., 1 job of size m OPT = m, average load = 1

> Main insight: OPT cannot be simultaneously larger than both!

Claim 3: Makespan_{GGA} $\leq p_{max} + (\sum_{t \leq n} p_t)/m$

Look at the heaviest loaded machine.

Look at the last job j_k we scheduled on this machine.

The load of that machine (at that time) was at most the average ($\sum_{(t \le k-1)} p_t$)/m

 $\leq (\sum_{t \leq n} p_t)/m$

This last job contributes a load of p_k≤ p_{max}

Total load on this machine $\leq p_{max} + (\sum_{t \leq n} p_t)/m$

To recap

Claim 1: $p_{max} \le OPT$

Claim 2: $(\sum_{t \le n} p_t)/m \le OPT$

Claim 3: Makespan_{GGA} \leq p_{max} + $(\sum_{t \leq n} p_t)/m$

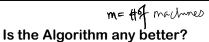
≤ OPT + OPT

Theorem: The Makespan_{GGA} of this algorithm is at most 2 × OPT

Two obvious questions

Can we analyse this algorithm better?

Can we give a better algorithm?



Being slightly more careful a few slides back:

 $\begin{aligned} \text{Makespan}_{\text{GGA}} &\leq p_{\text{max}}(\text{1-1/m}) + (\sum_{t \leq n} p_t) / m \\ &\leq \text{OPT (2-1/m)} \end{aligned}$

But we cannot do better with this algorithm

Bad example With (m-1)L jobs of size 1 before one job of size L

(If only we hadn't spread out the small jobs earlier...)

Is the Algorithm any better?

With (m-1)L jobs of size 1 before one job of size L $Makespan_{GGA} = L(m-1)/m + L = L(2-1/m)$ OPT = L

Better Graham's Greedy Algorithm

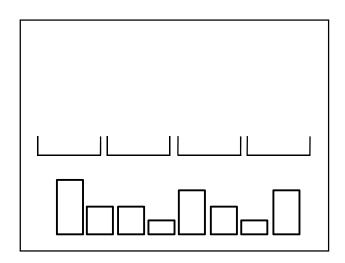
decreasing order of size

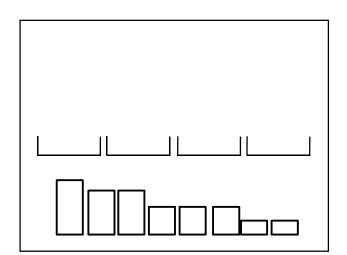
Order the jobs $j_1, j_2, ..., j_n$ in some enter

Initially all the machines are empty

For t = 1 to n

Assign j_t to the least loaded machine so far





Better Theorem: Makespan_{GBGA} \leq 1.5 OPT

Suppose max-load machine has only one job \boldsymbol{j}_{t}

Then we are optimal. ($p_t \le p_{max} \le OPT$)

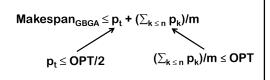
Else let j_t be last job GBGA scheduled on it.

Just before it, all machines have at least one job each. (since we allocated j_t to the least loaded machine)

So there are m+1 jobs with length at least \boldsymbol{p}_t (by the non-increasing ordering of the jobs)

 $Hence \ 2p_t \leq OPT \quad \ (by \ pigeonhole)$

 $p_t \le OPT/2$



 \Rightarrow Makespan_{GBGA} \leq 1.5 OPT

In fact, it can be shown that Makespan_{GBGA} \leq (4/3 – 1/3m) OPT

The proof is not hard, but we'll not do it here.

You can show examples where GBGA is at least (4/3 – 1/3m) OPT

And there are algorithms which do better than 4/3 but they are much more complicated...

This is the general template to safely handle problems you encounter that may be NP-hard

(as long as you cannot prove P = NP)

Let's skim over the steps with another problem as an example...

E.g. The Traveling Salesman Problem (TSP)

Input:

A set of n cities, with distance d(i,j) between each pair of cities i and j.

Assume that $d(i,k) \le d(i,j)+d(j,k)$

(triangle inequality)

Find the shortest tour that visits each city exactly once

NP hard!

Prove it is NP-hard

To prove NP hardness, find a problem such that

- a) that problem is itself NP hard
- b) if you can solve TSP quickly, you can solve that problem quickly

Can you suggest such a problem?

Hamilton Cycle

Hamilton Cycle (HAM)

Given a graph G = (V,E), a cycle that visits all the nodes exactly once

a) that problem is itself NP hard

b) if you can solve TSP quickly, you can solve HAM quickly

Take any instance G of HAM with n nodes.

Each node is a city.

If (i,j) is an edge in G, set d(i,j) = 1If (i,j) is not an edge, set d(i,j) = 2

Note: d(.,.) satisfies triangle inequality

Easy Theorem: any tour of length n is a Hamilton cycle in G

⇒ if you solve TSP, you find a Hamilton cycle.

Since it is NP hard to solve exactly, try to find an approximately good solution

From Lecture 18:

Find a minimum spanning tree

Walk "around" the MST and take shortcuts if a node has already been visited

Shortcuts only decrease the cost, so $Cost(Greedy Tour) \le 2 Cost(MST)$

≤ 2 Cost(Optimal Tour)

this is a "2-approximation" to TSP

And try to improve it...

[Christofides (CMU) 1976]: There is a simple 1.5-approximation algorithm for TSP.

Theorem: If you give a 1.001-approximation for TSP then P=NP.

What is the right answer?
Still a major unsolved problem...

Many cool combinatorial problems that arise in analyzing algorithms.

The mathematical tools you've learnt in this course are extremely relevant for their analysis.

Here's What You Need to Know... NP hardness How to prove NP-hardness (via reductions from hard problems)

Approximation Algorithms
If you can't solve it exactly
try to solve it as best you can

Scheduling Jobs on Parallel Machines Graham's Greedy Algorithm Analysis