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15-251
Great Theoretical Ideas 
in Computer Science

Approximation 
and Online 
Algorithms

Lecture 28 (November 30, 2010)

In the previous lecture, 
we saw two problem classes: 

P and NP

The Class P

We say a set L ⊆⊆⊆⊆ Σ* is in P if  there is

a program A and

a polynomial p( )

such that for any x in Σ*, 

A(x) runs for at most p(|x|) time
and answers question “is x in L?” correctly.

The class of all sets L that can be 
recognized in polynomial time.

The class of all decision problems that 
can be decided in polynomial time.

The Class P
P

contains many useful problems:

• graph connectivity

• minimum spanning tree

• matchings in graphs

• shortest paths

• solving linear systems Ax = b

• linear programming

• maximum flows

Many of this we will (re)visit in 15-451.
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NP
A set L ∈ NP

if  there exists an algorithm V and a 
polynomial p( ) such that

For all x ∈ L

there exists y with 
|y| ≤ p(|x|)

such that V(x,y) = YES

in p(|x|) time

For all x′ ∉ L

For all y′ with 
|y′| ≤ p(|x′|)

in p(|x|) time

such that V(x′,y′) = NO

“exists a quickly-verifiable proof” “all non-proofs rejected”

The Class NP

The class  of sets L for which there 
exist “short” proofs of membership 

(of polynomial length) 

that can be “quickly” verified 
(in polynomial time).

Recall: V doesn’t have to find these proofs y; it just needs to 
be able to verify that y is a “correct” proof.

P ⊆ NP

For any L in P, 
we take the “proof” y to be the empty string, 
and V(x,y) = A(x)

to satisfy the requirements.

Hence, every language in P is also in NP.

in this case, 
“the computation is the proof”

Summary: P versus NP

Set L is in P if  membership in L can be 
decided in poly-time.

Set L is in NP if  each x in L has a short 
“proof  of  membership” that can be 
verified in poly-time.

Fact: P ⊆ NP

Million (Billion) $ question: Does NP ⊆ P ?

NP-hard and NP-complete

L is NP-hard if 
a polynomial-time algorithm for L
implies a polynomial-time algorithm 

for all of NP

L is NP-complete if
L is NP-hard
and L itself  belongs to NP.

to show NP-hardness for L, find another NP-hard
problem (say SAT), and reduce SAT to L.

Classroom Scheduling

Packing objects into bins

Scheduling jobs on machines

Finding cheap tours visiting a subset of cities

Allocating variables to registers

Finding good packet routings in networks

Decryption

…

NP Contains Lots of  Problems
We Don’t Know to be in P
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What do we do now?

We’d really like to solve these problems.

But we don’t know how to solve them
in polynomial time…

A solution for some of  these:
Try to solve them “approximately”

E.g. Scheduling Jobs on Machines

Input:
A set of  n jobs, each job j has processing time pj
A set of  m identical machines
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E.g.: m=4 machines, n=8 jobs
E.g. Scheduling Jobs on Machines

Input:
A set of  n jobs, each job j has processing time pj
A set of  m identical machines

Is MinMakespan NP-hard?

Allocate these n jobs to these m machines to 
minimize the load of  the worst-loaded machine.

(We call this objective function the “makespan”)

We call this problem MinMakespan

NP hardness proof

To prove NP hardness, find a problem such that

b) if  you can solve MinMakespan quickly, 
you can solve that problem quickly

a) that problem is itself  NP hard

Can you suggest such a problem?
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The (NP hard) Partition Problem

Given a set A = {a1, a2,…,an} of  n naturals 
which sum up to 2B (B is a natural), does there
exist a subset of  these that sums to exactly B?

a) Partition is NP hard

so we’ve found a problem Partition such that:

Call this problem “Partition”

b) if  you can solve MinMakespan quickly, you can solve 
Partition quickly

Take any instance (A = {a1, …, an}, B) of  Partition

Each natural number in A corresponds to a job.
The processing time pj = aj

We have m = 2 machines.

Easy Theorem: there is a solution with makespan = B
iff  there is a partition of  A into two equal parts.

⇒ if  you solve Makespan fast, you solve Partition fast.

⇒ if  Partition is hard, Makespan is hard.

MinMakespan Partition

NP-hard

If  MinMakespan
in polynomial-time

then Partition
in polynomial-time

hence MinMakespan NP-hard

we just took an instance of  Partition and 
reduced it to MinMakespan

then MinMakespan
is also hard

so, if  Partition
is hard

What do we do now???

Finding the best solution is hard

but can we find something that is 
not much worse than the best?

Can you suggest an algorithm?

Graham’s Greedy Algorithm

Order the jobs j1, j2, …, jn in some order

Assign jt to the least loaded machine so far

Initially all the machines are empty

For t = 1 to n
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Graham’s Greedy Algorithm

Order the jobs j1, j2, …, jn in some order

Assign jt to the least loaded machine so far

Initially all the machines are empty

For t = 1 to n

Theorem: The MakespanGGA of this algorithm
is at most 2 × OptimalMakespan

How do you argue what the optimal value is?

Suppose you could show that

1. MakespanGGA ≤ 2 Blah, and 
2. Blah ≤ OPT, 

then you are done.

“OPT” Claim 1: pmax ≤ OPT

Proof: At least one machine gets
the largest job.

Claim 2: (∑t ≤ n pt)/m ≤ OPT

Proof: At least one machine must have
at least the average load.

Two candidates for “Blah”

OPT may be much larger
than either of  these two.

E.g., n jobs of  size 1

OPT = n/m, pmax = 1

E.g., 1 job of  size m

OPT = m, average load = 1

pmax

(∑t ≤ n pt)/m 

Main insight: OPT cannot be 
simultaneously larger than both!

Claim 3: MakespanGGA ≤ pmax + (∑t ≤ n pt)/m 

Look at the heaviest loaded machine.

Look at the last job jkwe scheduled on this machine.

The load of  that machine (at that time) was
at most the average (∑(t ≤ k-1) pt)/m 

≤ (∑t ≤ n pt)/m

This last job contributes a load of  pk≤ pmax

Total load on this machine ≤ pmax + (∑t ≤ n pt)/m 
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Claim 1: pmax ≤ OPT

Claim 2: (∑t ≤ n pt)/m ≤ OPT

Claim 3: MakespanGGA ≤ pmax + (∑t ≤ n pt)/m 

≤ OPT + OPT

Theorem: The MakespanGGA of this algorithm
is at most 2 × OPT

To recap

Two obvious questions

Can we analyse this algorithm better?

Can we give a better algorithm?

Is the Algorithm any better?

MakespanGGA ≤ pmax(1-1/m) + (∑t ≤ n pt)/m 

≤ OPT (2-1/m)

Being slightly more careful a few slides back:

But we cannot do better with this algorithm

Bad example

(If  only we hadn’t spread out the small jobs earlier…)

With (m-1)L jobs of  size 1 before one job of  size L

4

Is the Algorithm any better?

With (m-1)L jobs of  size 1 before one job of  size L

OPT = L

MakespanGGA = L(m-1)/m + L = L(2 – 1/m)
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Graham’s Greedy Algorithm

Order the jobs j1, j2, …, jn in some order

Assign jt to the least loaded machine so far

Initially all the machines are empty

For t = 1 to n

decreasing order of  size

Better

Theorem: MakespanGBGA ≤ 1.5 OPTBetter

Suppose max-load machine has only one job jt

Then we are optimal. (pt ≤ pmax ≤ OPT)

Else let jt be last job GBGA scheduled on it.

Just before it, all machines have at least one job each.

So there are m+1 jobs with length at least pt 

Hence 2pt ≤ OPT

(by the non-increasing ordering of  the jobs)

(since we allocated jt to the least loaded machine)

pt ≤ OPT/2

(by pigeonhole)

MakespanGBGA ≤ pt + (∑k ≤ n pk)/m 

pt ≤ OPT/2 (∑k ≤ n pk)/m ≤ OPT

⇒MakespanGBGA ≤ 1.5 OPT

In fact, it can be shown that
MakespanGBGA ≤ (4/3 – 1/3m) OPT 

The proof  is not hard, 
but we’ll not do it here.

You can show examples
where GBGA is at least (4/3 – 1/3m) OPT

And there are algorithms which do better than 4/3 
but they are much more complicated…
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This is the general template to
safely handle problems you 
encounter that may be NP-hard

(as long as you
cannot prove P = NP)

Let’s skim over the steps with
another problem as an example…

E.g. The Traveling Salesman Problem (TSP)

Input:
A set of  n cities, with distance d(i,j) between 
each pair of  cities i and j. 

Assume that d(i,k) ≤ d(i,j)+d(j,k)  (triangle inequality)

Find the shortest tour that visits each city 
exactly once

NP hard!

Prove it is NP-hard

To prove NP hardness, find a problem such that

b) if  you can solve TSP quickly, you can solve that 
problem quickly

a) that problem is itself  NP hard

Can you suggest such a problem?

Hamilton Cycle

Hamilton Cycle (HAM)

Given a graph G = (V,E), a cycle that visits all 
the nodes exactly once

a) that problem is itself  NP hard

b) if  you can solve TSP quickly, you can solve 
HAM quickly

Take any instance G of  HAM with n nodes.

Each node is a city.
If  (i,j) is an edge in G, set d(i,j) = 1
If  (i,j) is not an edge, set d(i,j) = 2

Note: d(.,.) satisfies triangle inequality

Easy Theorem: any tour of  length n 
is a Hamilton cycle in G

⇒ if  you solve TSP, you find a Hamilton cycle.

Since it is NP hard to solve exactly,
try to find an approximately good solution

From Lecture 18:

Find a minimum spanning tree

Walk “around” the MST and take shortcuts
if  a node has already been visited

Shortcuts only decrease the cost, so 
Cost(Greedy Tour)   ≤ 2 Cost(MST) 

≤ 2 Cost(Optimal Tour)

this is a “2-approximation” to TSP
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And try to improve it…

[Christofides (CMU) 1976]: There is a simple
1.5-approximation algorithm for TSP.

Theorem: If  you give a 1.001-approximation 
for TSP then P=NP.

What is the right answer?

Still a major unsolved problem…

Many cool combinatorial problems
that arise in analyzing algorithms.

The mathematical tools you’ve learnt in 
this course are extremely relevant 

for their analysis.

Here’s What 
You Need to 
Know…

NP hardness
How to prove NP-hardness
(via reductions from hard problems)

Approximation Algorithms
If  you can’t solve it exactly
try to solve it as best you can

Scheduling Jobs on Parallel Machines
Graham’s Greedy Algorithm
Analysis


