15-251

Great Theoretical Ideas
in Computer Science

11/30/2010

Approximation
and Online
Algorithms

Lecture 28 (November 30, 2010)

In the previous lecture,
we saw two problem classes:
P and NP

The Class P

We say asetL c2*isin P if thereis
a program A and
a polynomial p()

such that for any x in X*,

A(x) runs for at most p(|x|) time
and answers question “is x in L?” correctly.

The Class P

The class of all sets L that can be
recognized in polynomial time.

The class of all decision problems that
can be decided in polynomial time.

P

contains many useful problems:
« graph connectivity

* minimum spanning tree

¢ matchingsin graphs

¢ shortest paths

¢ solving linear systems Ax=b
¢ linear programming

¢ maximum flows

Many of this we will (re)visit in 15-451.

11/30/2010

NP
AsetL e NP Jvertifier
if there exists an algorithm V and a
polynomial p() such that

Forallx e L Forallx ¢ L
there exists y with For all y’ with
Iyl < p(Ix]) ly'l < p(Ix'])

such that V(x,y) = YES such that V(x',y’) = NO

The Class NP

The class of sets L for which there

exist “short” proofs of membership
(of polynomial length)

that can be “quickly” verified
(in polynomial time).

Recall: V doesn’t have to find these proofs y; it just needs to
be able to verify that y is a “correct” proof.

in p(|x]) time in p(|x]) time
| “exists a quickly-verifiable proof” | | “all non-proofs rejected” |
P c NP
Forany LinP,

we take the “proof” y to be the empty string,
and V(x,y) = A(x)
to satisfy the requirements.

Hence, every language in P is also in NP.

in this case,
“the computation is the proof”

Summary: P versus NP

SetL is in P if membership in L can be
decided in poly-time.

SetLis in NP if each x in L has a short
“proof of membership” that can be
verified in poly-time.

Fact: P = NP

Million (Billion) $ question: Does NP c P ?

NP-hard and NP-complete

L is NP-hard if
a polynomial-time algorithm for L
implies a polynomial-time algorithm
for all of NP

to show NP-hardness for L, find another NP-hard
problem (say SAT), and reduce SAT to L.

L is NP-complete if
L is NP-hard
and L itself belongs to NP.

NP Contains Lots of Problems
We Don’t Know to be in P

Classroom Scheduling

Packing objects into bins

Scheduling jobs on machines

Finding cheap tours visiting a subset of cities
Allocating variables to registers

Finding good packet routings in networks
Decryption

What do we do now?
We’d really like to solve these problems.
But we don’t know how to solve them

in polynomial time...

A solution for some of these:
Try to solve them “approximately”

E.g.: m=4 machines, n=8 jobs

GN\I
&\

V4
BN

—

NP hardness proof

To prove NP hardness, find a problem such that

)) _ wedmer Wik
b) if you can solve MinMakespan qunckly,) ?’“ I

a) that problem is itself NP hard

you can solve that problem quickly

Can you suggest such a problem?

11/30/2010

E.g. Scheduling Jobs on Machines

Input:
A set of n jobs, each job j has processing time p;
A set of m identical machines

E.g. Scheduling Jobs on Machines

Input:
A set of n jobs, each job j has processing time p;
A set of m identical machines

Allocate these n jobs to these m machines to
minimize the load of the worst-loaded machine.

(We call this objective function the “makespan”)
r;\‘

We call this problem MinMakespan
Is MinMakespan NP-hard?

The (NP hard) Partition Problem

Given aset A ={a,, a,,...,a,} of n naturals
which sum up to 2B (B is a natural), does there
exist a subset of these that sums to exactly B?

Call this problem “Partition”

so we’ve found a problem Partition such that:

a) Partition is NP hard (_m, &u‘z- \T,,\hsn se
Go

)

11/30/2010

b) if you can solve MinMakespan quickly, you can solve
Partition quickly

Take any instance (A = {a,, ..., a,}, B) of Partition

Each natural number in A corresponds to a job.
The processing time p; = a;

We have m = 2 machines.

Easy Theorem: there is a solution with makespan=B
iff there is a partition of A into two equal parts.

= if you solve Makespan fast, you solve Partition fast.
= if Partition is hard, Makespan is hard.

MinMakespan Partition
NP-hard
If MinMakespan then Partition
in polynomial-time in polynomial-time

we just took an instance of Partition and
reduced it to MinMakespan

then MinMakespan so, if Partition
is also hard is hard

hence MinMakespan NP-hard

What do we do now???

Finding the best solution is hard

but can we find something that is
not much worse than the best?

Can you suggest an algorithm?

Graham'’s Greedy Algorithm

Order the jobs j,, j,, ..., j, in some order
Initially all the machines are empty
Fort=1ton

Assign j, to the least loaded machine so far

11/30/2010

Graham’s Greedy Algorithm

Order the jobs j,, j,, ..., j, in some order
Initially all the machines are empty

Fort=1ton

Assign j, to the least loaded machine so far

Theorem: The Makespangg, of this algorithm
is at most 2 x OptimalMakespan

)
“OPT”

How do you argue what the optimal value is?

Suppose you could show that

1. Makespangg, < 2 Blah, and
2. Blah<OPT,

then you are done.

Two candidates for “Blah”

Claim 1: p,,,.« < OPT

Proof: At least one machine gets
the largest job.

Claim 2: (2, ., py)/m < OPT

Proof: At least one machine must have
at least the average load.

pmax

OPT may be much larger
than either of these two. (Zt<n PY/im

E.g., n jobs of size 1
OPT =n/m, pa =1

E.g., 1 job of size m
OPT = m, average load = 1

Main insight: OPT cannot be
simultaneously larger than both!

Claim 3: Makespangga < Pmax T (Zt<n P1)/M

Look at the heaviest loaded machine.

Look at the last job j, we scheduled on this machine.

The load of that machine (at that time) was
at most the average (X< .1) P)/m

< Zi<n P)m
This last job contributes a load of p, < pPpax

Total load on this machine < py, + (X< PY/M

11/30/2010

To recap

Claim 1: p,.x < OPT

Claim 2: (2, ., py)/m < OPT

Claim 3: Makespangga < Pmax * (Xt < P/M

<OPT + OPT

Theorem: The Makespangg, of this algorithm
is at most 2 x OPT

Two obvious questions

Can we analyse this algorithm better?

Can we give a better algorithm?

me ﬁ‘," P& Nwned
Is the Algorithm any better?

Being slightly more careful a few slides back:

MakespanGGA < pmax(1 -1/m) + (Zts n pt)/m
<OPT (2-1/m)

But we cannot do better with this algorithm

Bad example

With (m-1)L jobs of size 1 before one job of size L

oooog
0oog|,
0ooog

LI JL L

(If only we hadn’t spread out the small jobs earlier...)

Is the Algorithm any better?

With (m-1)L jobs of size 1 before one job of size L
Makespanggs = L(m-1)/m+ L =L(2-1/m)
OPT=L

11/30/2010

Better
Graham’s, Greedy Algorithm

/t/ decreasing order of size
Order the jobs j4, jo, ..., jniN S

Initially all the machines are empty

Fort=1ton
Assign j, to the least loaded machine so far

Better Theorem: Makespanggga < 1.5 OPT

Suppose max-load machine has only one job j;
Then we are optimal. (p; < Ppax < OPT)
Else let j, be last job GBGA scheduled on it.

Just before it, all machines have at least one job each.
(since we allocated j; to the least loaded machine)

So there are m+1 jobs with length at least p,
(by the non-increasing ordering of the jobs)

Hence 2p, < OPT (by pigeonhole)
p: < OPT/2

Makespanggga < Py + (Zk < PK)/M

p; < OPT/2 (Zk<n PK)/m < OPT

= Makespanggga < 1.5 OPT

In fact, it can be shown that
Makespanggga < (4/3 — 1/3m) OPT

The proof is not hard,
but we’ll not do it here.

You can show examples
where GBGA is at least (4/3 - 1/3m) OPT

And there are algorithms which do better than 4/3
but they are much more complicated...

This is the general template to
safely handle problems you
encounter that may be NP-hard

(as long as you
cannot prove P = NP)

Let’s skim over the steps with
another problem as an example...

11/30/2010

E.g. The Traveling Salesman Problem (TSP)

Input:

A set of n cities, with distance d(i,j) between

each pair of citiesiandj.

Assume that d(i,k) < d(i,j)+d(j,k) (triangle inequality)

Find the shortest tour that visits each city
exactly once

NP hard!

Prove it is NP-hard

To prove NP hardness, find a problem such that

a) that problemis itself NP hard

b) if you can solve TSP quickly, you can solve that
problem quickly

Can you suggest such a problem?

Hamilton Cycle

Hamilton Cycle (HAM)

Given a graph G = (V,E), a cycle that visits all
the nodes exactly once

a) that problemis itself NP hard

b) if you can solve TSP quickly, you can solve
HAM quickly
Take any instance G of HAM with n nodes.
Each node is a city.

If (i,j) is an edge in G, set d(i,j) =1
If (i,j) is not an edge, set d(i,j) =2

Note: d(.,.) satisfies triangle inequality

Easy Theorem: any tour of length n
is a Hamilton cycle in G

= if you solve TSP, you find a Hamilton cycle.

Since it is NP hard to solve exactly,
try to find an approximately good solution

From Lecture 18:
Find a minimum spanning tree

Walk “around” the MST and take shortcuts
if a node has already been visited

Shortcuts only decrease the cost, so
Cost(Greedy Tour) <2 Cost(MST)
<2 Cost(Optimal Tour)

this is a “2-approximation” to TSP

And try to improve it...

[Christofides (CMU) 1976]: There is a simple
1.5-approximation algorithm for TSP.

Theorem: If you give a 1.001-approximation
for TSP then P=NP.

What is the right answer?

Still a major unsolved problem...

11/30/2010

Many cool combinatorial problems
that arise in analyzing algorithms.

The mathematical tools you’ve learnt in
this course are extremely relevant
for their analysis.

Here’s What
You Need to
Know...

NP hardness
How to prove NP-hardness
(via reductions from hard problems)

Approximation Algorithms
If you can’t solve it exactly
try to solve it as best you can

Scheduling Jobs on Parallel Machines
Graham’s Greedy Algorithm
Analysis

